Lateral Profiles of Hadron-Induced Showers in the AHCAL

Riccardo Fabbri, Angela Lucaci-Timoce

Overview

Introduction x/y-Profiles of Mean Energy Radial Profiles of Mean Energy Radial Profiles of Mean Energy Density First Data-Monte Carlo Comparison Conclusions and Overview

Purpose of Analysis

- Lateral shower profiles have two components: an electromagnetic core (from π⁰), and a non-electromagnetic halo (mainly non-relativistic shower particles)
- Do we see this in our AHCAL?

Analysis Procedure

- Calculate trajectory of impinging track through the AHCAL ⇒ use tracking information from drift chambers
- For correct track projection through calorimeter, align the calorimeter to chambers
 ⇒ use hadronic shower center of gravity in calorimeter for alignment
- Radial development of shower energy deposition along AHCAL calculated with respect to the reconstructed track trajectory
 - \Rightarrow for each calorimeter cell, calculate radial coordinate:

$$\rho_{cell} = \sqrt{(x_{cell} - x_{track})^2 + (y_{cell} - y_{track})^2}$$

• Variables of interest:

mean energy sum / mean energy density as a function of ρ

Data Selection

- π^- beam data from **CERN 2007** period; combined ECAL/HCAL/TCMT data taking (no energy deposited in TCMT used so far)
- Distributions shown for run 330327 (18 GeV π^-),
- Trigger selection: BEAM (SPILL + scintillator coincidence) & SPILL data (skip calibration/pedestal data)
- Discard events with showers already starting in ECAL: $N_{ECAL hits} < 50$

Data Selection - continued

• Noise reduced by AHCAL energy cut: $E_{AHCAL} > 0.5$ MIPs

Software Framework

- Latest reconstruction software used to produce Icio files for reconstructed data
- 'Old' code used for track reconstruction (issues with TBTrack)

x-Profiles of Mean Energy

- Mean energy as a function of $x = x_{HCAL \ cell} x_{track}$ for 18 GeV π^-
- Profiles scale with distance from calorimeter start

• Thanks to the high longitudinal granularity of the AHCAL we can investigate the shower development accurately for different depths from shower start

- Largest energy deposition in first lambdas
- Maximum of mean energy moves outwards with increasing λ_l
- Possibly, two slopes visible in the profiles ⇒ different contributions in hadron showers?

Radial Profiles of Mean Energy Density

- Mean energy density as a function of radius ρ , for different depths from shower start
- Maximum of energy density at shower center

• Mean energy density as a function of shower depth

• Mean energy as a function of radius ρ

Energy Density: Data vs Monte Carlo

- The only way to trust Monte Carlo simulations is to validate them with data
- First look at MC: two physics lists, QGSP-BERT and LHEP (Birks law and time cut included)
- No tracking code used for MC, just simple fitting of hits from drift chamber
- Only basic cuts applied in MC

Conclusions: Data

- Analysis of transverse profile well ongoing; done with respect to calorimeter and to shower start
- Several observables investigated: radial profile of mean energy and energy density, lateral scan of longitudinal shower development, fractional energy profiles
- Remaining sources of measurement bias:
 - possible remaining MIP contamination ?
 - systematic uncertainties (due to alignment procedure, etc)

Conclusions: Monte Carlo

• First very preliminary look into MC distributions

Overview

- Improve the cleaning of the data sample and include information from TCMT
- Work towards data-Monte Carlo agreement (several things to be checked: does the beam hit the same tiles in HCAL in both cases, etc)
- Study effect of finite tile size with Monte Carlo
- Lateral profile of fractional energy (Moliere radius)
- Extract different contributions in the shower development
- Need working (and understood) TBTrack code for both data and Monte Carlo

BACK-UP SLIDES

• Combined ECAL/HCAL/TCMT data taking

Run number	Energy [GeV]
330325	25
330326	20
330327	18
330328	15
330332	10
330308	8
330390	40
330391	50
330392	80

y-Profile of Mean Energy

• Mean energy as a function of $y = y_{HCAL \ cell} - y_{track}$ for 18 GeV π^-

Radial Profiles of Mean Energy

• Mean energy as a function of radius ρ for 18 GeV π^- , in different calorimeter layers

Radial Profiles of Mean Energy Density

• Mean energy density as a function of radius ρ , for different calorimeter layers

Lateral Scan of Longitudinal Shower Development

• Mean energy density as a function of calorimeter layer number

