

EUROTeV WP4 Report Polarised Positron Source

Jim Clarke, on behalf of the WP4 team

DESY Zeuthen STFC (Daresbury and RAL) University of Durham University of Liverpool University of Bristol University of Manchester University of Oxford

(ASTEC. Milestones and Deliverables

Milestone	Milestone name	WP	Lead Contractor	Planned (months)	Achieved (months)
1	Detailed scope and planning report to First Workshop	4	2	6	6
2	Presentation of results and detailed implementation at second workshop 4 2				25
3	Computer model/simulations of complete source available	4	2	18	18
4	Presentation of phase 2 results to 3 rd Workshop. Plans for GDE input and further R&D	4	2	30	30
5	Low-energy polarimeter prototype complete	4	1	48	48
6	Prototype undulator constructed and measured 4 2		48	48	
7	Full engineering design for photon target and collimator complete	4	2	48	48
Deliverable No	Deliverable Name	WP	Lead Contractor	Planned (in months)	Achieved (in months)
1	Fully engineered undulator prototype based on chosen technology	4	2	30	30
2	Report on performance simulations of polarized source system	4	2	18	18
3	Report on conceptual design for spin-flipping system, including estimates of errors	4	1	18	18
4	Fully tested low-energy polarimeter	4	1	48	48

Astec. Low Energy POLarimeter

- e+ beam at the source (after capture and first acceleration):
 - → 125 MeV < E < 5 GeV
 - → beam size ~ cm
- Applicable processes for polarimetry:
 - → Compton Transmission (up to energies of ~100MeV)
 - → Bhabha polarimetry (E > 250 MeV)
 - → Compton polarimetry (after DR, 5GeV)
- Tested with prototype
 - Compton Transmission (E166)
- Simulation studies for
 - → Bhabha polarimetry
 - Compton polarimetry
- Simulation Tool for polarimetry studies:
 - → Geant4 with polarization extension

- E166: prototype for polarized ILC e+ source
 - → Diagnostics for e+, photons, e-

→ Positron energy: 4.5 MeV – 7.5 MeV

(ASTEC. E166 Compton transmission polarimetererator Science and Technology Centre

E166 results:

- Good agreement of measurement and prediction
- e+ polarized up to ~90%
- Verification with new GEANT4 – big effort here!

Application at ILC

- E_{e+} = 125 MeV
- Method is destructive
 - only few bunches/pulse,
 - → target heating
- Intense ILC beam \rightarrow sufficient statistics after few bunches

ASTEC. Bhabha Polarimeter

- Møller polarimeters widely used
- asymmetry of Bhabha scattering for opposite magnetization of target foil measured
- Almost non-destructive due to large transverse e+ beam size
- Intense beam \rightarrow fast

Method	e+ Energy		precision	Delivered
Compton transmission	125 MeV	Destructive → use only few bunches per pulse	Stat: <1% after few pulses, syst. will dominate	Prototype (E166) E166 analysis, E166 modelling, design simulations for ILC application
Bhabha	400 MeV	Non- destructive	Stat: ≤1 % after few pulses, syst. will dominate	design simulations
Compton	5 GeV (after DR)	Non- destructive	Stat: ~5% after ~5min	design simulations

Geant4 with polarized processes ccelerator Science and Technology Centre

• Applications:

- → Polarization transfer (target, E166)
- Polarimetry (Bhabha/Moller, Compton transmission in particular E166)
- → ILC polarized positron source modelling
- Polarization is taken into account for
 - → Pair-production
 - → Bremsstrahlung
 - Compton scattering
 - Moller/Bhabha scattering
 - Positron annihilation into photons
 - → Photoelectric effect
- Included since Geant4 release 8.2 (Dec 06)
 - → Main focus: longitudinal (or circular) polarization
 - → Energy range of interest: MeV ... ~5 GeV
- Cross checks with EGS, WHIZARD/O'mega
- Authors: K.Laihem, A. Schaelicke, P. Starovoitov

(ASTEC. 1.75m Undulator Fabrication

Winding

Potted and in one half of steel yoke

Complete magnet

ASTEC. Quench Training Data

Both long undulators have **exceeded the design current** (216 A) by ~40%.

J.A. Clarke et al, EPAC 08

Measured at the RDR field level

(ASTEC. Cryomodule cold tests

ASTEC. Target Prototype

Accelerator Science and Technology Centre

(ASTEC. Cockcroft Institute Prototype

Accelerator Science and Technology Centre

- Extensive modelling of the source has been carried out by several groups
- Used for global optimisation of undulator, target, and capture section parameters
- Yield simulations include undulator, collimation, target, capture magnet, and linacs
- Modelling of *polarisation* of positrons also included

Energy spread increase of electron beam for 200m long undulator at room and cryogenic temperatures for alternative vessel materials due to **resistive wall impedance**

Energy spread increase of electron beam at room (solid) and cryogenic (dashed) temperatures for copper vessel due to **resistive wall impedance**

Surface roughness necessary to produce an energy spread of 0.005% (nominal for ILC is 0.05%) for different vessel radii and form factors.

Mean **emittance increase** due to **geometric wakes** of misaligned taper sections and photon collimators in undulator section.

(ASTEC Conclusion

- All milestones and deliverables have been met
- A huge amount of progress has been made in the last 4 years
- It has been a very successful and genuine collaboration
- It was a lot of fun as well !
- Key Publications
 - → Alexander et al, PRL **100**, 210801 (2008)
 - → Scott et al, PR-STAB 10, 032401 (2007)
 - Duncan Scott thesis
 - → Alexander et al, EUROTeV-Report-2008-091
 - → Bailey et al, EUROTeV-Report-2008-028
 - → Bailey et al, EUROTeV-Report-2008-026
 - → Zang et al, EUROTeV-report-2008-029
 - → Schmid, EUROTeV-Report-2005-024