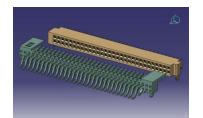

News from the 1m² GRPC SDHCAL

collection of slides from : Ch.Combaret, I.L, H.Mathez, J.Prast, N.Seguin, W.Tromeur, G.Vouters and many others

The DHCAL DIF Board

- Based on a Cyclone 3 Altera FPGA (EP3C6F484).
- Separated from the slab for more flexibility.
 - Can handle slab what ever the nb of HardRoc on it.
 - DIF task force interface compliant.
 - MicroMegas and RPC detector compatible.
 - HardRoc, Lyon's asics and also Spiroc and Skyroc compatible.
- On the DAQ side, interface with :
 - The LDA (final DAQ).
 - PC through USB for standalone tests and debugs.
 - DIF neighbors.
 - Interface with the analog DAQ removed.

Architecture of the DIF Board


GND	1	2
MUX3_CSn	3	4
MUX2_CSn	5	6
MUX1_CSn		8
spare1	9	10
MUX_ENN	11	12
MUX_WRN	13	14
spare2	15	16
en_otaq	17	18
GND	19	20
SR_resiet	21	22
hold	23	24
spare3	25	26
SR_IN	27 29 31	28
spare4	29	30
SR_OUT	31	32
spare5	33	34
SR_ck	35	36
GND	37 39	38
TransmitOn_3		40
Pwr_analog	41	42
TransmitOn_2	43	44
Pwr_dac	45	48
Pwr_ss/Pwr_sca	47	48
GND	49	50
TransmitOn_1	51	52
Pwr_digital	53	54
TransmitOn_0	55	56
Pwr_adc	57	58
SC_SROUT	59	60
SC_SROUT_BYPASS	61	62
SC_select	63	64
SC_ck	65	66
User_LVDS_P	67	68
Trig_Ext_P	69	70
DVDD	71	72
Ck_5MHz_0_P	73	74
Ck_5MHz_1_P	75	78
GND	77	78
Clk_40MHz_0_P	79	80
Clk_40MHz_1_P	81	82
DVDD	83	84
Raz_Chn_P	85	86
Val_Evt_P	87	88
AVDD	89	90

2	GND
4	Analog_0
6	GND
8	
-	Analog_1 GND
10	
12	C_test
14	GND
16 18	MUX_A4
	MUX_A3
20	MUX_A2
22 24	MUX_A1 MUX_A0
26	Ramfullext
28	Reset_BCID
30 32	GND Resetn
34	Start_Conv_daqb
36	Start_Conv_daqp
30	End_Readout Start_acq
40	Start_acq RamFull
40	Dout_3
44	GND
44	Dout_2
40	
50	Start_Readout Trig_ext
52	
54	Start_Readout_Bypass Dout_1
56	GND
58	Dout_0
60	C CRIN RYPACE
62	SC_SRIN_BYPASS SC_SRIN
64	SC_reset
66	SC_load
68	User_LVDS_N
70	Trig_Ext_N
72	AVDD
74	Ck_5MHz_0_N
76	CIK_5MHz_1_N
78	GND
80	Clk_40MHz_0_N
82	Cik_40MHz_1_N
84	AVDD
86	Raz_Chn_N
88	Val_Evt_N
90	AVDD
100	AV DD

SLAB Interface

The connector has been designed for DHCAL but also ECAL or AHCAL

So the DHCAL DIF can also be used for ECAL or AHCAL !

Samtec FSH/ SFMH 90 pin connector

The DIF Board

1 m² PCB MAIN SPECIFICATIONS

ASU PCB Design

- 24 x 64 1 sq cm pads
- 24 Hardrocs Asics chained

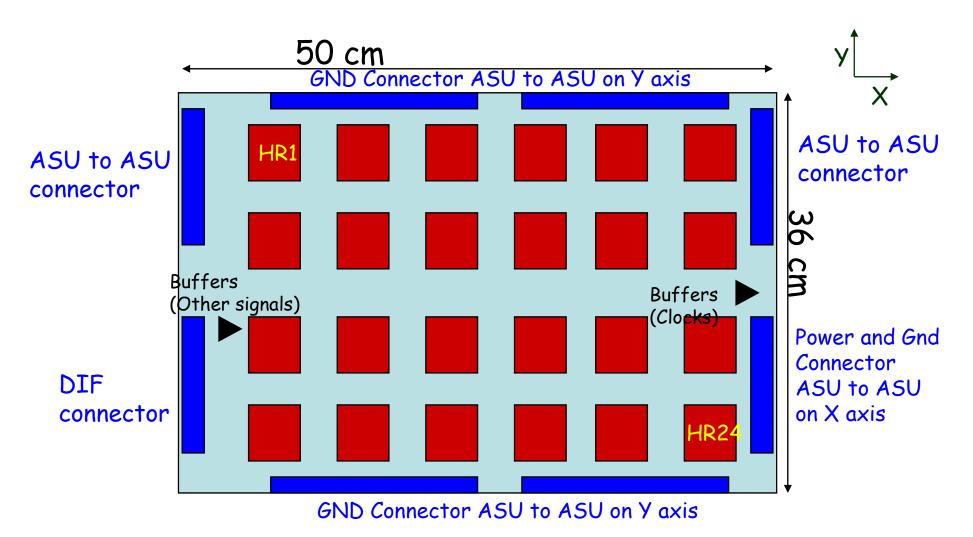
1 m2 PCB board :

- 6 ASUs
- 144 Hardroc Asics

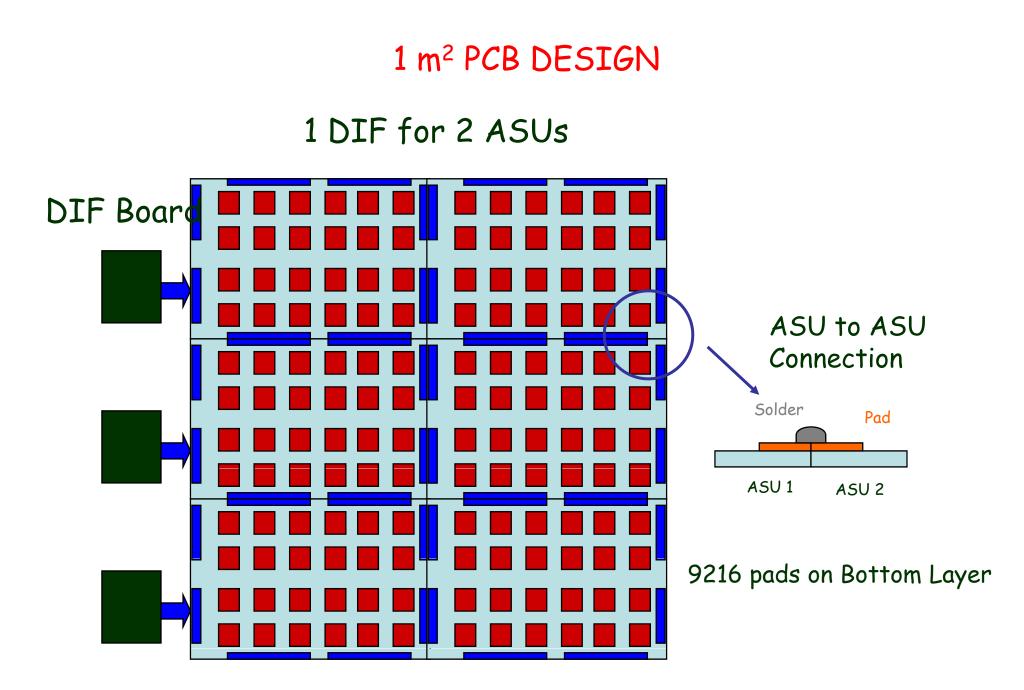
DIF boards :

- 1 DIF for 1 ASU : 6 DIFs
- 1 DIF for 2 ASU : 3 DIFs

Buffered Signals

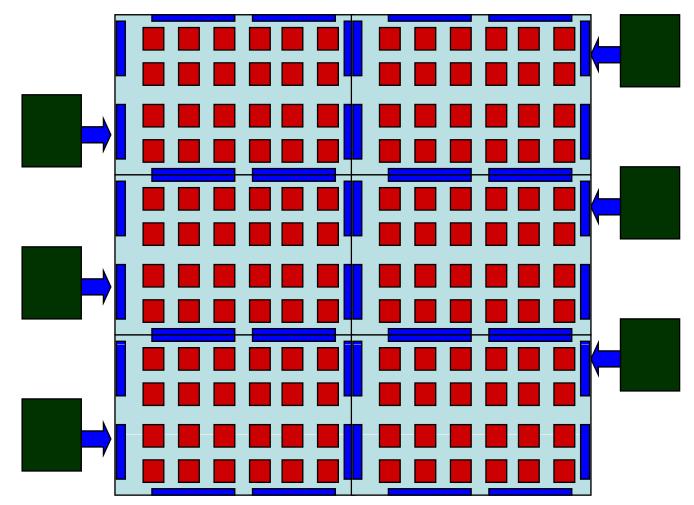

Analog Readout :

(Long Lines 1 m for Clock on 1 ASU):


- Slow Control
- Power_on
- Control for Analog Readout
- Digital Readout

- All OUT_Q are connected together
- EN_OTAQ switch on or off using DIF board and decoder

ASU PCB DESIGN



Buried and Blind Vias (Same as the last PCB with 4 HR)

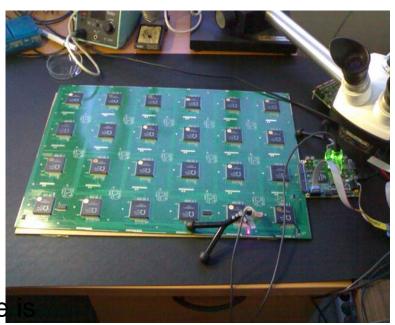
1 m² PCB DESIGN

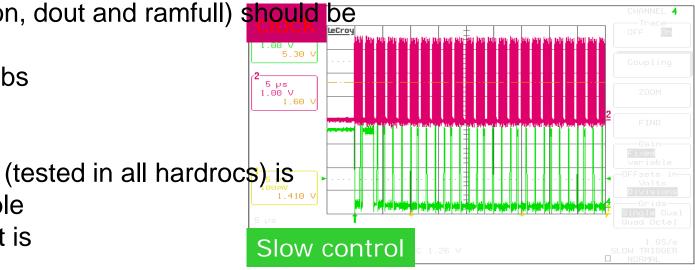
1 DIF for 1 ASUs

1 m² PCB DESIGN (Layers)

- o Layer 1 (TOP) : interconnect
- o Layer 2 : interconnect
- o Layer 3 : 3.3V Digital
- o Layer 4 : GND
- o Layer 5: 3.5V Analog
- o Layer 6 : PADs to Hardroc
- o Layer 7 : GND
- o Layer 8 (BOTTOM) : PADs

Pads to Hardroc interconnects are the same for the entire PCB (hierarchical design)


Present Status


- DIF command and register access use **XDAQ** software
- **DIF** is fully functionnal
- The tested slab is fully functionnal with following modifications :
 - 1. Use of buffers on the SLC clock line mandatory (max nb of hardrocs chained without buffer could not exceed 12)
 - 2. Use of buffers on the Open drains readout lines

(transmit_on, dout and ramfull) should be forseen 5.30

for next slabs

- Slow control (tested in all hardrocs) is stable and reliable
- Data readout is

Present Status

What was tested :

- Numerical readout has been tested in the following modes :
- 1. Manual Start Acquisition/Manual Start Readout (Manual Trigger
- 2.Manual Start Acquisition/ Automatic Start Readout (Internal Trigger)
- 3.Automatic startAcquisition/ Automatic Start Readout (« Beam test mode
- -Both DIF firmware and XDAQ software stable and reliable
- -Both DIF Firmware and XDAQ software have been tested with trigger rate >1kHz and 128 events per trigger (DAQ levels < noise level)
- -DIF temperature and current consumption monitoring on all DIFs

Present Status

We have started tests with cosmics using one slab and step by step we will equip the 1M² GRP with the 6 slabs (all now equipped with tested HR1)

We hope the fully equipped 1M² GRPC will be running very soon