

Shower Profile and Leakage Studies

by Benjamin Lutz

Finding the Shower Start Leakage Profiles Simulation Procedures Comparison of Simulation and Data

Method to Find Shower Start

- sum energy and hits within an active layer
- scan from the front
- if three neighboring layer show signal significantly larger than MIP assume shower start
- simple but robust

Verification of Shower Start

general:

- exponential drop
- slope agrees with PDG values for π[±] (within material uncertainties)

comparison to simulation:

- ratio 1 (+ digitization inaccuracies)
- no MC-model dependence

Detector Response versus Shower Start

depth of first interaction influences for each event:

- visible energy
- energy resolution

due to leakage at the back of the calorimeter

Leakage Correction

- cannot shrink relative width of showers with certain start point
- but can scale shower energy to the right mean energy
- \rightarrow improves linearity
- \rightarrow improves jet energy resolution

Shower Profile from Shower Start

11/12/08

Benjamin Lutz - CALICE/EUDET HCAL meeting

Monte Carlo and Digitization

- Mokka (Geant4)
 - simulates the physics using
 - model of haronic physics (physics lists)
 - detector geometry
 - gives energy deposit for each 1x1cm² cell
 - as sum (default)
 - as list of hits
- digitization
 - translates energy to electronic units
 - has to model
 - energy to photo conversion
 - photo to electrical signal conversion
 - response of electronics

The Summing Problem

- saturation in the scintillator (Birks' Law)
 - nonlinear relation between deposited energy and scintillation light
 - once cell can have several deposits with different intensities
- timing of electronics
 - time window is defined by primary particle (trigger)
 - energy deposits in the shower will be distributed over some time
 - one cell can have several hits at different times
- rather detector effects than physics but digitization (currently) has no access to individual energy deposits
 - \rightarrow use Birks' implementation in Geant4
 - \rightarrow use time-cut already in simulation

integrated signal versus time

Exact Shape of the Detector Acceptance in Time

Profiles in Data and Simulation

Benjamin Lutz - CALICE/EUDET HCAL meeting

Profiles – Observations

- QGSP BERT
 - without modification far off
 - with Birks' and time cut matches data best

• LHEP

- without modification reasonable result
- Birks'
 - reduces energy
 - no improvement to shape
- time-cut almost no influence
- degrading agreement around 5 λ
 - TCMT reconstruction?
 - TCMT digitization?

Response

• QGSP BERT

- too high without modification
- good matching with Birks' and time-cut
- ratio between data and simulation is flat

• LHEP

- reasonable matching without modifications for early shower
- to low response with Birks'
- suggests higher values for late showers

Resolution

• QGSP BERT

- big disagreement without modifications
- good agreement with Birks' and time-cut

LHEP

- without modification
 - agreement within 10%
 - simulation/data ratio is not flat
- with Birks'
 - agreement worsens
 - shape stays

Achievements:

- method to find shower start
- measurement of un-convoluted shower profile
- proof of principle for event by event leakage correction
- progress in the simulation/digitization

What did we learn?

- proper digitization is essential for comparing different MC models
 - If you simulate physics your detector cannot see, you might be comparing apples with oranges!
 - A simple model might describe a detector with limited response better than the "real physics".

Outlook

- extension of the energy range up to 80 GeV
- temperature effects
 - in reconstruction
 - in simulation
- tracking based shower start finding
- test to measure leakage by shape

Time-Cut Influence on the Profiles

transversal profile

longitudinal profile

pictures: QGSP_BERT 20 GeV p- 30deg

QGSP_BERT:

- different spatial distribution of visible and invisible part
- invisible only 5% of total but might influence tails

LHEP:

- almost no difference between visible and invisible part
- invisible is 1%, no difference observable