# Possible Relationship Between Defect Pre-Heating and Defect Size H. Padamsee Cornell

S0 Meeting, Jan 26, 2009

### High Resolution SEM Image of Quench Causing Pit From J. Knobloch Thesis (1997)





- Quench detected in single cell 1500 MHz cavity at 93 mT (22 MV/m)
- Cavity prepared by BCP
- Pre-heating at same field just below quench was 300 mK
- Pit with sharp edge found at defect site after cavity dissection
- No foreign elements found with EDX

#### Another Pit Defect Found in Single Cell 1500 MHz

From 2008 Thesis by A. Romanenko

- Reported at Chicago ILC-2008 Meeting
- Cavity prepared by EP and flash BCP, No bake
- Quench at 120 mT (~29 MV/m)
- Extract samples to study high field Q-slope and Quench



## Temperature Map at 120 mT & Q vs E



Defect heating at quench site at field BELOW quench

#### Response of Individual Thermometers



- Defect heating surpasses Q-slope heating above 80 mT
- Defect heating dominates strong Q-slope heating until about 110 mT
- Maximum thermometer signal due to defect heating alone is 180 mK
  - closer to 100 mK if we subtract Q-slope heating (which we do not know exactly)
- Use 100 180 mK for defect heating range (remember this!)

# SEM on Extracted SampleReveals <u>Large</u> Pit





SEM back-scattered image

Problem: Thermal model predicts that normal conducting defect size (e.g 20μm diameter) to cause quench at 120 mT should be much smaller than observed pit size (mm) Wiener et al, TTC-note 2008-8.



# Can Pre-Heating (Temperature Map) at the Defect Site Tell Us More About the Actual Size/Resistance of the Quench Producing Region?

- The thermal model assumes a "normal conducting" defect and adjusts the radius to reach a specified quench field.
- But the observed pit is much larger than the model predicts
- => either the active defect region is much smaller than the observed pit,
  - or the effective resistance is much smaller than normal conducting, or some combination
- Thermometry can help to sort this out!

#### **New Calculations**

- For a specified quench field vary both the defect size and the "defect" surface resistance to reach quench.
  - Calculate temperature rise on the rf surface just below the quench field
  - The temperature should approach  $T_c$  (H) just outside the defect
- Calculate the temperature at the outer cavity wall
- Compare observed temperature rise at thermometer with calculated temperature rise at outer wall
- Remember that the thermometer detects only 20 25% of the actual temperature rise
  - Previously calibrated (see J. Knobloch thesis)

### Calculated Temperature Next to Defect on RF Side Near Quench Field (Yi Xie)



# Calculated Temperature Below Defect on Outer Wall Near Quench Field (Yi Xie)



### Estimate Size of Resistive Region from ΔT and Calculations

Possible region of high field enhancement and quench





SEM back-scattered image

#### Conclusion

- Pre-heating of defect provides additional information about the nature of the defect
- Comparing the observed pre-heating of the defect with thermal model calculations suggests that in the case analyzed
- The observed pit is very much larger than the actual region responsible for quench
- Further support for the edge enhancement theory
- Quench takes place at regions of current density enhancement

2008-

Shemelin

# Calculations of Field Enhancement for Pits





