Planning the Experiment

Nick Walker
9mA Experiment mini-workshop
16.01.2009

Planning "The Experiment"

- No more beam-time between now and dedicated run
- Several 'sub-systems' we had originally hoped to test out and have operational will get "first look" during the run
- No "dress rehearsal" as originally planned
- September was "it"!

Goal for this session

- Develop a strategy and interim goals for the dedicated run
- Plan out what needs to be done to achieve them, allocate a number of shifts to them
- Formulate a list of 'experiments’ that we want to do, what data will be recorded
- Invasive tuning experiments
- In addition to achieving the primary demonstration goals

Constraints

- People!
- How best to populate shifts
- This will at some level determine the detailed programme
- Not enough 'experts’ to run 24/7 \rightarrow overall strategy
- Do not expect detailed planning today, but propose to produce a tentative block schedule
- Realistic shift coverage
- Understand how many shifts we really need
- Possibility of including other studies

Goals of 9mA test (summary)

- Demonstrate energy stability <0.1\% (LLRF) with high beamloading
- Bunch to bunch
- Pulse to pulse
- Over many hours (~ shift)
"hands-off" running
(monitoring)
- Evaluate operation close to cavity limits
- Quench limits
- Impact of LFD, microphonics etc.
- Evaluate LLRF performance
- Required klystron overhead
- Optimum feedback / feedforward parameters
- Exception handling (development)
- Piezo-tuner performance etc.
- Evaluate HOM absorber (cryoload)
- Controls/LLRF development
- Software \& algorithm development for ATCA (XFEL) LLRF system

Categories of Activities

- Machine set-up \& commissioning
- Achieving long-pulse 9mA beam pulse with high-gradient
- Dedicated experiments

If
 Machine Set-up \& Commissioning

- Assumptions: set-up 3nC immediately and maintain for entire run
- Careful gun, injector set-up, matching, optics and steering
- Loss-free transmission to dump
- Commissioning (~new hardware)
- 3MHz laser operation
- SIMCON DSP system
- Tests and experience with new dump-line instrumentation / hardware
- Critical: need to convince ourselves it is safe to go to high beam powers

Achieving Long Pulses

- Primary goal
- Requires a strategy
- Step-wise approach to ultimate performance goal
- Start at $\sim 700 \mathrm{MeV}$ and step up in energy
- energy states
- Establish long bunch trains and stable operation (1MHz, 3MHz,...)
- Each energy state (potentially current state) defines an interim experimental goal
- Once achieved, maintain for ~shift (monitor)
- Perform dedicated experiments / measurements at this state

A 3 Shift Cycle Proposal

- Afternoon Shift
- Achieve required energy/current state and tune machine (LLRF)
- Night Shift
- Operations only (expert on call)
- Maintain configuration (quiet running, hands-off)
- Monitor all signals (DAQ, needs definition)
- Day Shift
- Initial analysis of night-shift (stability achieved, problems, etc.)
- Programme of invasive experiments at this energy/current state

```
9mA team \& FLASH experts required for \(\underline{2}\) shifts
(day \& evening)
```

Night shift left to
ops to 'run beam'
Not without risk
(high beam
power!)

- Decision to go to next energy/current state
- 5 such cycles would be 5 days

Dedicated Experiments

- "Dedicated" = well-defined and specific experiments
- Scan some parameter, make some measurement
- Test software / scripts / automation
- Hardware modifications, adjustments, ...
- Should be focused on 'goals' list
- Beyond long-term stability studies
- Understand/catalogue required beam and machine conditions
- Repeat at each energy/current state ("standard measurements")
- Requires a specific state or different state altogether.
- Previous scenario: these would be scheduled on day shifts

Additional Time

- "The best-laid plans of mice and men often go awry"
- Contingency required
- Expect the unexpected
- Possible down-time (hardware failures)
- Protracted tuning
- "brick wall"
- Not able to make progress for some limiting reason (shall we take bets?)
- Need plan Bs
- \Rightarrow despite well scheduled plan, flexibility will be mandatory
- Team meeting every day 8AM Parasitic / Other Experiments
- In principle, the machine time can support other accelerator studies
- Once we have our block schedule with intermediate goals/objectives defined, we can evaluate proposals
- 9mA experiment takes priority
- No retuning of the machine!
- Experiments must make use of (our) existing beam conditions
- During night shift, only parasitic experiments
- Note these should be treated as guidelines, not strict rules
- All rules have exceptions if merited!

How long? (Needs Discussion)

3nC gun / injector / RF (long pulse) set-up (1MHz) <30 bunches	3 shifts
Dump line instrumentation commissioning / characterisation / thresholds	3 shifts
3MHz beam (<30 bunches) SIMCON DSP work (closed loop, commissioning)	2 shift
Achieve long pulse operation (3 shift cycles)	3 shifts
Additional experiments (not included in above)	15 shifts
Contingency	3 shifts
Total guesstimate	5 shifts

