

Introduction, 9mA program goals, schedule, constraints

Nick Walker (DESY)

9mA Experiment Mini-Workshop 16.01.2009

9mA Experiments in TTF/FLASH

ilr

Primary Objectives

- Long-pulse high beam-loading (9mA) demonstration
 - 800µs pulse with 2400 bunches (3MHz)
 - 3nC per bunch
 - − Beam energy 700 MeV ≤ E_{beam} ≤ 1 GeV
- Primary goals
 - Demonstration of beam energy stability
 - Over extended period
 - Characterisation of energy stability limitations
 - Operations close to gradient limits
 - Quantification of control overhead
 - Minimum required klystron overhead for LLRF control
 - HOM absorber studies (cryo-load)
 - ...
- Major challenge for FLASH !
 - Pushes many current operational limits
 - Planning and preparation:

Primarily a LLRF experiment

- Experiment addresses needs of ILC, XFEL and FLASH
 - <u>ILC</u>: International GDE stated milestone
 - primary driver: important and visible deliverable for <u>international</u> <u>effort</u>
 - <u>XFEL</u>: Close collaboration with world-wide LLRF groups
 - Focus (potentially accelerate) development and planning for XFEL
 - "Operation at limits" experience provides important Input for future XFEL development
 - Important demonstration also for XFEL
 - <u>FLASH</u>: Addresses many operational issues
 - · Automated exception handling and recovery
 - Better characterisation of machine
 - Towards routine high-power long-pulse operation for users.

TTF2/FLASH remains a unique facility world-wide

Achieving the Goals

Achieving the Goals

Achieving the Goals

Goals of 9mA test (summary)

Demonstrate energy stability <0.1% (LLRF) with high beam-loading

- Bunch to bunch
- Pulse to pulse
- Over many hours (~ shift)

Evaluate operation close to cavity limits

- Quench limits
- Impact of LFD, microphonics etc.
- Evaluate LLRF performance
 - Required klystron overhead
 - Optimum feedback / feedforward parameters
 - Exception handling (development)
 - Piezo-tuner performance etc.
- Evaluate HOM absorber (cryoload)
- Controls/LLRF development
 - Software & algorithm development for ATCA (XFEL) LLRF system

Original Proposed Schedule

1st machine study peri 19/05-01/06/08: • LLRF development & planning for 3nC optics via by-pass (good transmission) XFEL✓ 2nd machine study per[;] 08-28/09/08: FLASH ✓ By-pass TPS (6 shifts) ILC ✓ Longer bunch trains almost 100% synergy 3rd machine study peric 05-18/01/09: (est. Ø 4 shifts) "dress rehearsal" LLRF development / quench limits / beam loss **Before shutdown 09: Dedicated 9mA experiment** 2 week (tbc) run dedicated to 9mA studies Detailed experimental programme in planning

High Beam-Loading Long Pulse Operation

•

.

•

•

10 MeV over 550 bunches (~1%) (~4 MeV over 1st 500)

450 bunches achieved with stable operation

- Few hours of archived data
- Currently under analysis
- (vacuum OK)

Long bunch trains with ~2.5 nC per bunch:

- 550 bunches at 1MHz
- 300 bunches at 500KHz
- 890 MeV linac energy

All modules (RF) running with 800us flat-top and 1GeV total gradient

- Increase from 450 to 550 bunches eventually caused vacuum incident
 - The "straw that broke the camels back!"

LLRF Observations & Comments 1

- In general, system works relatively well
- 3mA beam loading (new regime) required <u>manual</u> <u>adjustment</u> of LLRF beam-loading parameters
 - As we increased the number of bunches (learning curve)
 - Understanding path to automation (\rightarrow XFEL/ILC)
 - Program termination (vacuum incident) did not allow enough time to optimise LLRF parameters
- Existing data indicates stability issues which we will need to address by increasing regulator gain
 - Likely to get more prominent as we increase beam-loading and gradient

LLRF Observations & Comments 2

- Adaptive Feed-Forward system is being used to <u>compensate</u> inadequacies in control system
 - No a priori knowledge of beam pulse structure sent to LLRF
 - AAF used to deal with (user driven) changes
 - Beam pulse termination (MPS) influences AFF causing errors (next pulses)
- Different AFF systems in FLASH
 - Hardware implementations
 - Move towards common platforms/algorithms (SIMCON-DSP)
- LLRF feedback gain in general too low (20)
 - Will cause problems for high beam-loading at high-gradients
 - Microphonics, LFD, etc...

LLRF Observations & Comments 3

- Existing data analysis needs to be augmented
 - Still questions concerning interpretation
 - Further (refined) experiments being planned
 - Continued analysis of existing data
- DAQ system invaluable but needs tool development (on-going)

Extrapolation to 9mA

- What additional problems can we predict from existing data
- What measures must we take to alleviate them
- List of improvements to LLRF systems
 - Subject of a seminar in their own right

Vacuum repair & instrumentation

- FLASH operation currently limited to ~30x1nC bunches
 - Cu window
- Dump line (see right) will be replaced by 3m contiguous Ti pipe
 - No BPM
- Addition (MPS) diagnostics foreseen
 - Thermometry
 - Loss-monitoring
- No magic fix will still require 'experience' to understand new diagnostics

Ti-StS flange (BPM) is believed to be the culprit

 \rightarrow Presentation by M. Schmitz

Challenges & Preparation (Review)

III Mancolg	Item	Problem	Responsible	Due date / tese
				oun Lowe.
Long RF Pulse	Gun thermal stability	Trip recovery? (see LLRF)	Floettmann (Krebs)	2 OK? Readiem
	Klystron/Modulator Issues (ACC1?)	Stability at long pulse (trip rate)	Choroba	?? ASA solved ? Resolved ? Status?
3MHz operation	Laser Pockels cells	FPGA/controls (pulse length constraint?)	Schreiber Fröhlich	Test crore with bean. No test with main run
		Spare cells	Schreiber (Wills)	Pu before 10/08
	TPC / MPS system 3MHz controls issues		Rehlich Fröhlich	Before 5/09 status dies)
High bunch charge	High-transmission optics through by-pass		Golubeva Balandin	3 shifts during May Accelerator Studies to test
	RF gun parameters		Krasilnikov	?? (Before May, set-up in
				optics shifts)

Challenges & Preparation (Review)

III Failiburg	Item	Problem	Responsible	Due date / tested by
High charge (cont.)	BPM saturation	Install attenuators (if necessary)	Nölle	1 day to inst First Not needed optics set Not way 08
MPS	TPS in by-pass	Installation and commissioning	Napoly/Hamdi (Saclay)	1 shift/day for 3 days of 300 1 nC bunches (Sep08 Accelerator Studies)
	BML in by-pass	Check / test	Fröhlich	1 shift to test. (Can overlap with TPS testing in Sep. 08)
Other issues:	Beam dump constraints		Schmitz	Input needed for optics work May 08.
	Cryogenics	Any issues?	Lange / Petersen	Heads-up for high gradient running.
	By-pass "energy spectrometer" resolution	Would like to measure <10 ⁻³ relative bunch- bunch energy deviation.	Kammerling / Nölle	Answer by 15/0 08 In theory OK 08 (look at data)

ILC RF Unit (ACC456)

- From ILC perspective, ACC456 is the most interesting
- Strong links to ILC "S2" Goals
 - String test with beam
- What can we achieve with this test with respect to S2?

ILC S2 context of 9mA studies

S2: Test of ILC RF unit (1 klystron – 26 cavities) operating at an average gradient of <u>31.5 MV/m</u> with full beam loading at 9mA

ltem #	S2 Goals		
2	Beam-based feedback and controls		
4	RF 'fault-recognition' software		
5	Quench rates and recovery times		
7	Gradient spread		
9	HOM heating		
12	Produce a 'spec RF Unit'		
10	Check beam phase and energy stability		

9mA GoalsOperation close to gradient limitsDemonstration of beam energy
stability over extended periodCharacterisation of energy
stability limitationsHOM absorber studies (cryoload)Long-pulse operation with full
beam loadingQuantification of control
overhead

:lr

- Aim for stable 9mA running at this limit
 - 5% below quench limit
 - Klystron power ~6 MW

- Go above quench limits
- Klystron power ~7 MW

What are the real limits?

- 9mA experiment will not have the 'average gradient' required by S2
- Need to extrapolate to address as many of the Questions to this meeting S2 goals as possible
- Understand what the limits of this extrapolation are
 - Confidence limits
 - What data is really needed under which conditions
- What goal/test will still require a full S2 test?
 - Apart from the political one
- Note: TTF/FLASH the only facility available to us until >2012

- Primary goal: planning for the main experiment
 - Detailed list of experiments, goals, schedule etc.
 - What must we learn for ILC (S2) and XFEL
 - Discussions on detail planning \rightarrow this afternoon

How well do we understand the challenges?

 Based on TTF/FLASH operations experience as well as results from dedicated shifts

What can we do from now until September

- Data analysis
- Modelling
- Hardware preparation (e.g. SIMCON DSP system commissioning, 3MHz pockels cell installation,...)