
FLASH Beam Dump Line ILC TTF/FLASH 9mA Workshop, 16. January 2009

HELMHOLTZ

GEMEINSCHAFT

M. Schmitz

Capability of Dump & Window

	Layout Parameters for FLASH Dump & Window	9mA Experiment
I _t , current in train	≤ 9 mA (9MHz · 1nC)	≤ 9 mA (3MHz · 3nC)
Q _t , charge in train	≤ 6.4 μC (6400 · 1nC)	≤ 7.2 μC (2400 ⋅3nC)
T _t , length of train	≤ 800 μ s	≤ 800 μ s
v_t , rep. rate of trains	≤ 10 Hz	≤ 5 Hz
I _{ave} , avg. beam current	≤ 64 μ A	≤ 36 μ A
E, beam energy	≤ 2 GeV	≤ 1 GeV
P _{ave} , avg. beam power	≤ 128 kW	≤ 36 kW
Beam Requirements		
given by Dump	σ ≥ 1 mm	σ≥1.1 mm
	slow sweep r ≥ 2cm	slow sweep not required
given by Window	σ≥ 2 mm	σ ≥ 2.2 mm
	slow sweep r ≥ 2cm	slow sweep r ≥ 1 cm

 \Rightarrow 9mA Experiment within Dump & Window layout parameters, i.e. should work w/o problems

- as far as the requirements of size and sweep are fulfilled
- and beam is guided cleanly to there (needs diagnostic and steering)

Work on Dump Line (I)

- 1.) Demount Beam Line upstream of Concrete Shield
 - Incl. both QC (upper & lower half) for convenient de-/installation space of dump vacuum section
 - Feasible with forklift and / or Egyptian style
 - All photon beam lines above can stay untouched (minor interference with some supports)

Work on Dump Line (II)

2.) Replace leaky Dump Vacuum Section

• Replace leaky section with new one, but

WITHOUT any flange connection or feedthroughs inside inaccessible concrete shielding Check sliding properties of chamber feet on surface of concrete hole

- Long term need of new spare window w/o Ti-chamber (a la XFEL approach)
- Equip new dump vacuum section with a lot of diagnostics (\rightarrow K. Wittenburg talk)
 - New BPM15 position of limited benefit (~ in focus of Q10/11 at normal operation settings) Open Decision: <u>Need additional BPMs</u>?

on atmosphere (N_2 vented) side of window head (impact on length of Ti-pipe insertion) behind Q10 and / or Q11, requires new chambers (round or special profile)

No good idea for profile measurement at window up to now for this setup
Open Decision: New D1Dump chamber with rear port to install optical window
allows investigation of infrared, OTR, or Luminescence at window, but long distance (~15m)

3.) Installation of upstream Beam Line

Open Decisions:

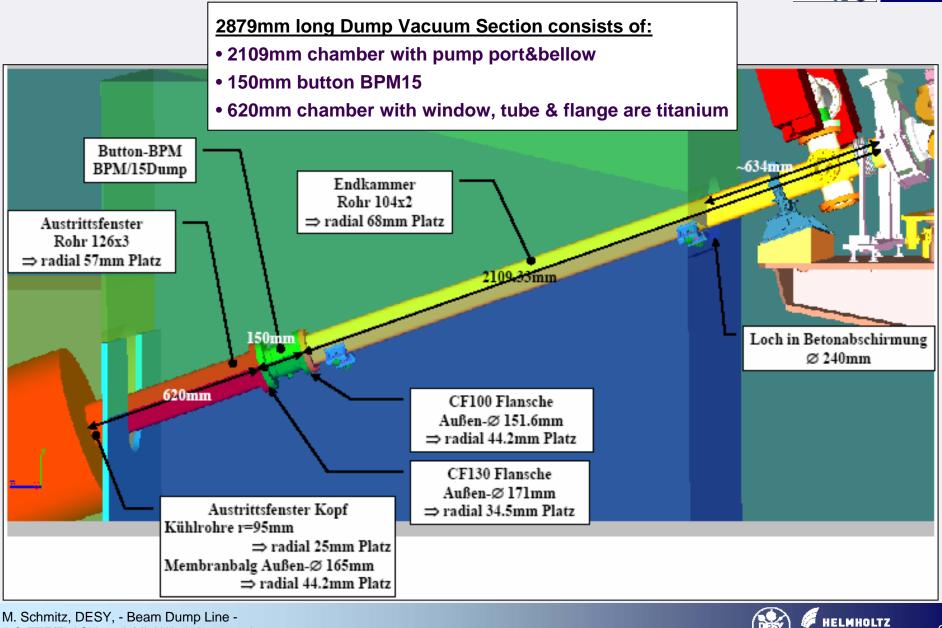
Install modified QC for steering purposes ? (field has to be evaluated)

Install new QC chamber(s) with Button BPM

- Demount upstream beam line possible w/o impact on photon beam lines above
- Replacement dump vacuum section should be ready in time Decision: BPM in window head ?
- Preparations (mechanically and electrically) for modified QC can be done in advance, except cabling needs open tunnel

```
Decision: QC as steerer ?
```

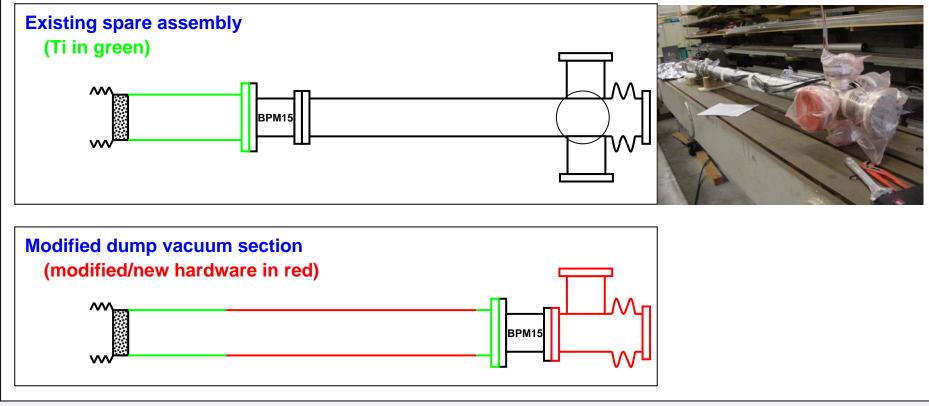
- New QC-chambers could be prepared in advance to allow for additonal BPM(s) circular profile simpler (time & cost) than existing profile Decision: Additional BPMs required?
 - if yes: can we afford little less aperture by using a simple circular profile


5

Dump Vacuum Section Repair (I)

6

GEMEINSCHAFT



<u>Plan</u>

• Complete dump line section (window, BPM15, tube with pump port & bellow) exists as spare.

- 1. Use spare window, cut off Ti-flange, insert long Ti-tube (rolled from plate material, Laser welded)
- 2. Re-use BPM15 and put upstream to window (outside of concrete)
- 3. Put new pump port & bellow unit upstream of BPM15

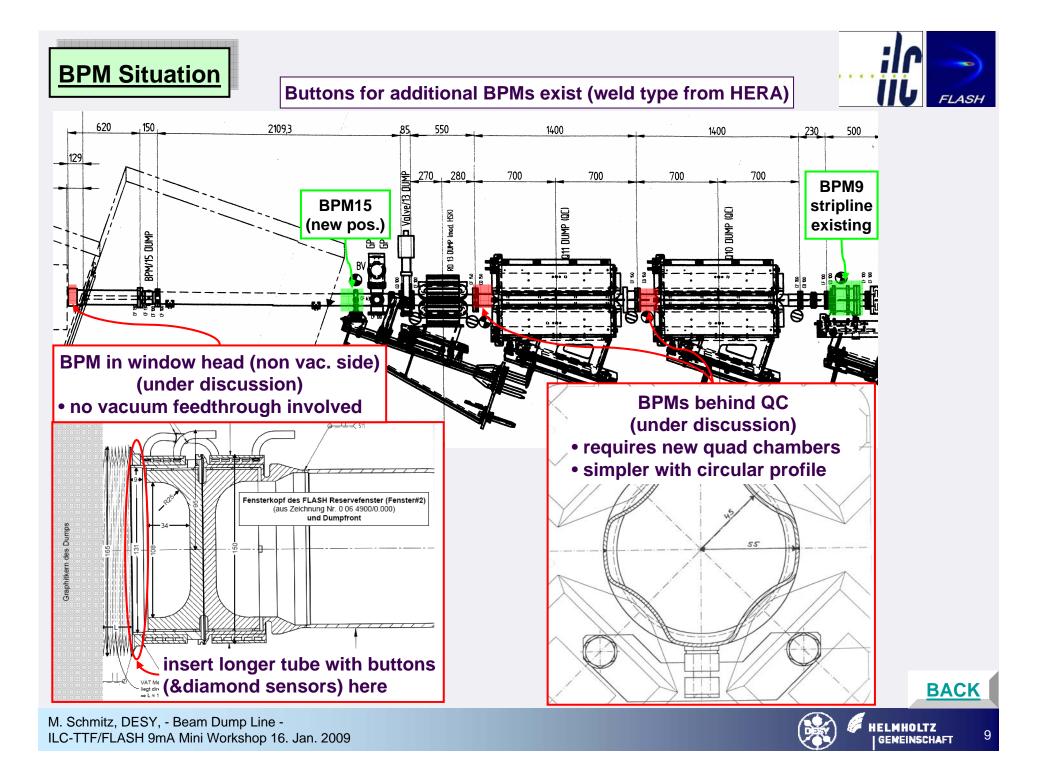
Dump Vacuum Section Repair (III)

Status / Outlook

- Offer for Ti-tube including laser welding it between existing window tube and Ti-flange exists, company Hoedtke, delivery time 10 weeks
- Order will be placed mid. jan.09 \Rightarrow beg. april 09 new window chamber at DESY
- Manufacturing of pump port & bellow unit in shadow of above timeline

After that:

- Leak check, clean (pump and purge)
- Flange together with BPM15 and pump port & bellow unit
- Install Cu-cooling pipes and N₂-pipe along the section
- Install diagnostics and / or empty supports for it
 - diamond halo sensors (& BPM?) in window head
 - loss monitors along the vacuum pipe (flexwell cables, glass fibres, water cerenkov)
- Adjust height of the feet, which rest inside the concrete

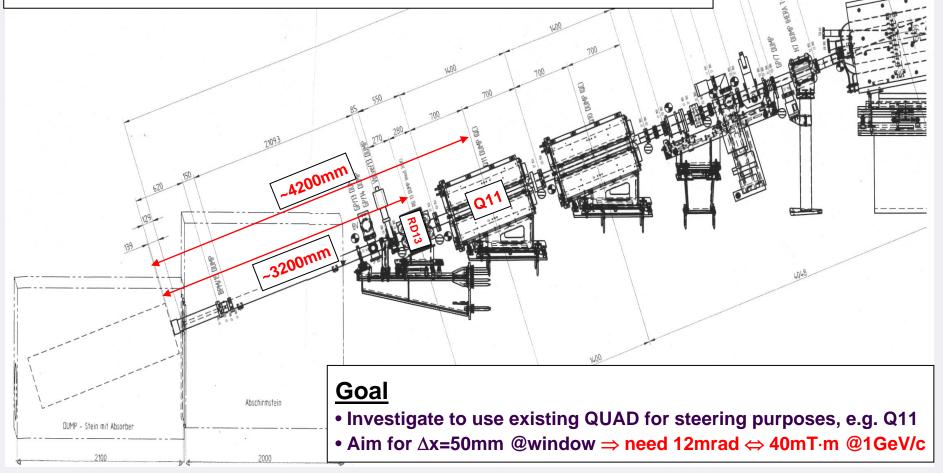

according to a prior measurement at the deinstalled section

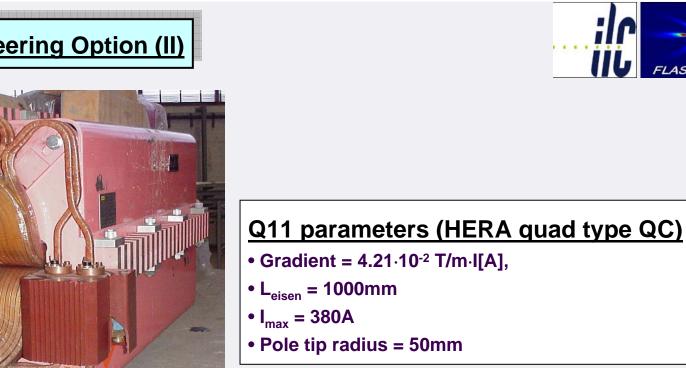
• ...

 \Rightarrow After all that new Dump Vacuum Section ready to be installed

BACK

Additional Beam Steering Option (I)


ELMHOLTZ


GEMEINSCHAFT

10

Problem

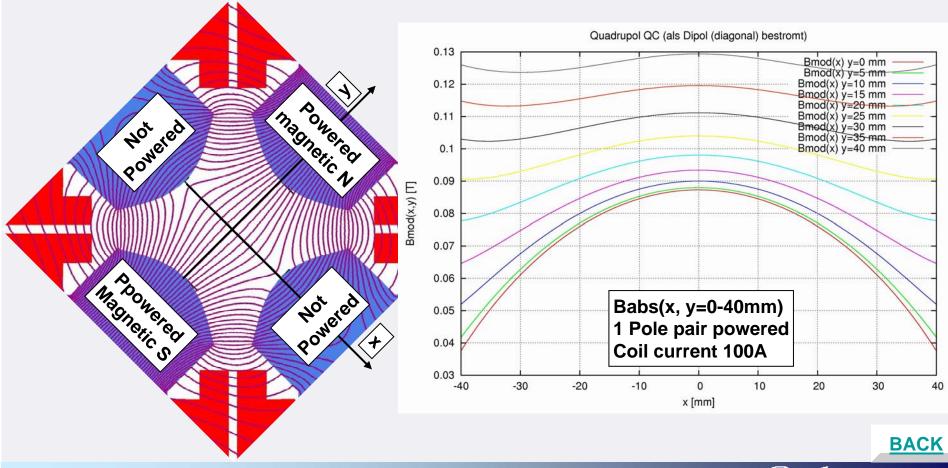
- Rather strong quads Q10/11 (typ. 1/f~1m) create strong kick for off axis beam
- Downstream of Q10/11 no possibility to correct for it
- No space to install additional large aperture (Ø100) steerer magnets

Additional Beam Steering Option (II)

Effort to modify QC

- Modify the electric circuitry at the magnet, to allow individual powering of each pole is possible (K. Liebeck –MEA-), could be prepared in advance with another QC
- 3 additional power supplies + PSC and cabling through the tunnel. power supplies, PSC and space available (A. Hauberg –MKK-), cabling needs ~3days in tunnel
- Software which translates the 4 circuits into 3 knobs (Quad, CX & CY) for operators
- Equip the modified magnet with alignment nests and make transfer measurement
- Prepare everything that the magnet fits on the given support in the tunnel

Additional Beam Steering Option (III)


HELMHOLTZ

GEMEINSCHAFT

12

QC opera simulation (M. Marx), 1 pole pair powered as "dipole"

- B_y(x=0, y=0) = 0.88mT/A, L_{eisen} = 1m ⇒ 12mrad requires I = 45A·p[GeV/c] no problem in strength enough overhead, since quad current (typ. ≤ 200A), and I_{max} = 380A
- Field quality acceptable? has to be evaluated

