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Outline

Advantages of the ultrarelativistic approach.

The ultrarelativistic expansion for a cold fluid (hydrodynamic picture).

The ultrarelativistic expansion for a charged particle.

The ultrarelativistic expansion of the Maxwell-Vlasov equations.

Unifying the three approaches.
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Advantages of the ultrarelativistic approach.

Classically the dynamics of particle beams due to external and self-fields is
described by coupling Maxwell’s equations with a model for the beam.

The electromagnetic fields satisfy Maxwell’s equations with the source given
by the beam and the external magnets and RF fields.
The beam satisfies the Lorentz force equation and may be modelled in a
variety of ways.

A collection of point particles,
A one particle probability distribution satisfying the Vlasov or Boltzmann
equation.
A fluid either warm or cold (the hydrodynamic picture).
. . .

It is then necessary to solve a nonlinear system of integral or algebraic partial
differential equations.

These are usually solved numerically, for example by PIC methods.
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Advantages of the ultrarelativistic approach.

In accelerators particles move at speeds close to the speed of light and
therefore we can use an ultrarelativistic expansion.

This replaces the nonlinear system of equation with a hierarchy of linear
equations.

There is usually a single step in the hierarchy which contains a nonlinear
equation, but this can be solved using the method of characteristics. (Particle
tracking, optics).

The ultrarelativistic expansions are usually used implicitly, in statements like
“Space charge can be ignored for high energy particles”.

Higher order terms in the expansion are used for more accurate modelling,
especially for intense beams.

This approach may enable one to perform quantum mechanics at one level of
the hierarchy, using the preceding levels of the hierarchy as a fixed “classical”
background.
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The ultrarelativistic equations for a cold fluid
(hydrodynamic picture).

Maxwell’s equations

∇× E +
∂B
∂t

= 0, ∇ · B = 0,

∇ · E =
1
ε0

γρ, ∇× B =
1

mε0
ρp +

1
c2

∂E
∂t

Lorentz force for a charged fluid

γ
∂p
∂t

+
( p

m
·∇

)
p = q

(
γE +

1
m

p× B
)
, m2c2γ2 − p · p = m2c2,

Conservation of charge

m
∂

∂t
(γρ) +∇ · (ρp) = 0

E(t, x) and B(t, x) are the electric and magnetic fields.
Here m and q are the particles’ mass and charge.(
mc2γ(t, x), p(t, x)

)
is the energy and momentum fields of the electrons.

ρ(t, x) is the proper charge density.
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Cold fluid
In order to perform the ultrarelativistic expansion we introduce a parameter
ε > 0 which we may think of as the reciprocal of the energy of the beam. I.e.

ε =
1

γdesign

We introduce the following expansions.

E = ε−1E0 + E1 + εE2 + . . . , B = ε−1B0 + B1 + εB2 + . . . ,

γ = ε−1γ0 + γ1 + εγ2 + . . . , p = ε−1p0 + p1 + εp2 + . . . ,

ρ = ερ0 + ε2ρ1 + . . .

The leading terms in (mγ, p) must increase with γdesign and therefore we start
the expansions of these at ε−1.
Observe that the leading terms in E0 and B0 increase with the “energy of the
beam”. An example of these is the external bending and focusing magnets.
The proper charge density starts at order ε so that the total current J = ρp
remains finite.
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Cold fluid: Hierarchy

The external electric E0 and magnetic B0 fields satisfy the source-free
Maxwell equations.

∇ · E0 = 0, ∇× B0 =
1
c2

∂E0

∂t
, ∇× E0 +

∂B0

∂t
= 0, ∇ · B0 = 0.

The following non linear differential and algebraic equations are solved for γ0
and p0.

γ0
∂p0

∂t
+

(p0

m
·∇

)
p0 = q

(
γ0E0 +

1
m

p0 × B0

)
, m2c2γ2

0 − p0 · p0 = 0

These describe the motion of a lightlike fluid of charged particles undergoing
the Lorentz force equations. Although these equations are nonlinear they can
be solved using characteristic curves (particle tracking) techniques.
The leading order equation describing charge conservation is

m
∂

∂t
(γ0ρ0) +∇ · (ρ0p0) = 0

and is solved for ρ0.
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Cold fluid: Hierarchy

Solve the Maxwell equations for E1 and B1 with the charge density 1
ε0

γ0ρ0

and 3-current 1
mε0

ρ0p0 as sources:

∇ · E1 =
1
ε0

γ0ρ0, ∇× B1 =
1

mε0
ρ0p0 +

1
c2

∂E1

∂t
,

∇× E1 +
∂B1

∂t
= 0, ∇ · B1 = 0.

Solve

γ0
∂p1

∂t
+ γ1

∂p0

∂t
+

(p1

m
·∇

)
p0 +

(p0

m
·∇

)
p1

= q
(
γ0E1 + γ1E0

)
+

q
m

(
p0 × B1 + p1 × B0

)
,

and − γ0γ1 +
p0 · p1

m2
0c2

= 0

for γ1 and p1. Use of the above algebraic equation to eliminate γ0 leads to an
inhomogeneous linear partial differential equation for p1.
These equations give the correction to the motion of the beam.
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Single particle
Again we have the expansion for the electric E and magnetic B fields.

E = ε−1E0 + E1 + εE2 + . . . , B = ε−1B0 + B1 + εB2 + . . . ,

Assume for the moment that these are prescribed.
E0, B0 satisfy the source free Maxwell equations
E1, B1 satisfy Maxwell’s equations with the charge and current sources given
by the motion of “other particles”. For example in wakefield analysis, the
other particles are the particles ahead of the bunch.
Let

(
t(τ), x(τ)

)
be the laboratory time and position of a particle at proper

time τ . We also set

p(τ) = m
dx
dτ

, γ(τ) =

√
1 +

p · p
m2c2 =

dt
dτ

The expansions of these variables are given by

x(τ) = x0(τ) + εx1(τ) + · · · , t(τ) = t0(τ) + εt1(τ) + · · · ,

γ(τ) =
γ0(τ)

ε
+ γ1(τ) + · · · and p(τ) =

p0(τ)

ε
+ p1(τ) + · · ·

since x(τ) and t(τ) are bounded as ε→ 0 but γ(τ) and p(τ) diverge as ε→0.
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Single particle, Hierarchy

x0(τ)

x(τ)

εx1(τ)

The leading order motion for the unperturbed particle is given by
dp0

dτ̂
= q(γ0E0 +

p0

m
× B0) and m2c2 dγ0

dτ̂
= qp0 · E0

where τ̂ = ε/τ , subject to the constraint

m2c2γ2
0 − p0 · p0 = 0

These describe the motion of a charged particle moving at the speed of light
and undergoing the Lorentz force equation.
The reparametrisation of τ with τ̂ is because particles moving at lightspeed do
not have a proper time.
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Single particle, Hierarchy
The first order corrections to the motion of the affected particle, and hence the
wakefield kick formula, are given by

dp1

dτ̂
= q

(
γ0

(
t1

∂E0

∂t
+ (x1 · ∇)E0

)
+

p0

m
×

(
t1

∂B0

∂t
+ (x1 · ∇)B0

)
+ γ1E0 +

p1

m
× B0 + γ0E1 +

p0

m
× B1

)
and

m2c2 dγ1

dτ̂
= q

(
p0 ·

(
t1

∂E0

∂t
+ (x1 · ∇)E0

)
+ p1 · E0 + p0 · E1

)
subject to the constraint

m2c2γ0γ1 = p0 · p1

When considering the particles passing through wakefields, it is usual to apply
the rigid bunches approximation. I.e. ignoring all the terms not containing E1
or B1:

dp1

dτ̂
= γ0E1 +

p0

m
× B1 and m2c2 dγ1

dτ̂
= p0 · E1
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Single particle: Lorentz Dirac

Up to now we have considered E1 and B1 to be prescribed fields.

We would like E1 and B1 to be derived from the motion of the unperturbed
particle x0(τ̂).

However along the world-line of the unperturbed particle, the resulting
electric and magnetic fields diverge.

We therefore need to do a regularisation, similar to the Lorentz Dirac
regularisation.

This would give a new equation for the back reaction due to the emission of
electromagnetic radiation.

The new equation would be second degree, not third degree, and will therefore
not suffer from the pathological nature of the Lorentz Dirac equation.

This is a natural setting for looking at quantum corrections, where E0, B0 and
x0 are the classical background.
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Vlasov Field

Final example: consider the ultrarelativistic Maxwell-Vlasov equations.

We expand out the one particle probability distribution f = f (t, x0, p0)

f (t, x0, p0) = f0(t, x0, p0) + εf1(t, x0, p0) + . . .

Solve the Vlasov equation for fixed electromagnetic fields.(
γ0

∂

∂t
+

p0

m
· ∂

∂x0
+ q(γ0E0 +

p0

m
× B0) ·

∂

∂p0

)
f0 = 0
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Vlasov Field

Solve the correction to the electromagnetic fields,

∇ · B1 = 0 , ∇× E1 +
∂B1

∂t
= 0 ,

∇ · E1 =
q
ε0

∫
f (t, x0, p0)d

3p0 and

∇× B1 −
1
c2

∂E1

∂t
= µ0q

∫
p0

γ0m
f (t, x0, p0)d

3p0

Calculate the correction f1(t, x0, p0) to the one particle probability distribution.(
γ0

∂

∂t
+

p0

m
· ∂

∂x0
+ q(γ0E0 +

p0

m
× B0) ·

∂

∂p0

)
f1 = q(γ0E1 +

p0

m
× B1) ·

∂f0
∂p0
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Unifying the three models of ultrarelativistic charge:
Some thoughts from differential geometry

The three models are all examples to the
“Distributional Ultrarelativistic Maxwell-Vlasov equations”
We look at distributions on TM whereM is spacetime.
The distributions are similar in nature to δ′, the derivative of Dirac
δ-functions, only in higher dimensions.
They have support on a submanifold and are differentiated with respect to
vector field transverse to the manifold.
This method has a number of advantages:

It unifies all three approaches, together with the ultrarelativistic KV distribution
and the ultrarelativistic multicurrent distribution.
It gives alternative ways to write the ultrarelativistic expansion.
It leads to new models of ultrarelativistic charge.
The equations are “prettier”.
It naturally contains the effects of gravity.

Is this a good formulation to perform QED for intense beams?
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