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Introduction

There are two types of quantum effects at the radiation of high-energy particle in external

field. The first one is associated with with the quantization of the motion of the particle in

the field. For example, the commutator of velocity components of the relativistic particles in a

magnetic field H (where energy levels is ε =
√

m2 + 2eH~n À m) is

[vi, vk] =
ie~
ε2

εikjHj, (1)

and the uncertainty relation for velocity components reads

∆vi∆vk ∼
e~H
ε2

=
H

H0γ2
=
~ω0

ε
' 1

2n
, H0 =

m2

e~
=

 
m2c3

~e

!
= 4.41 · 1013

Oe (2)

where we use units where c = 1, ω0 = eH/ε is the Larmor frequency, γ = ε/m, so that with

the energy rise the motion becomes increasingly classical.
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The second type of quantum effect is associated with the recoil of the particle when it radiates

and is of the order ~ω/ε. Already in the classical limit (~ω ¿ ε) this type is principal since

ω ∼ ω0γ
3

The first order matrix element of the photon emission by a charged particle in the external

field may be represented in the form

Ufi =
ie

2π
√
~ω

Z
dt

Z
d

3
rF

+
fs′(r) exp(iεft/~)

(e
∗
J) exp[i(ωt− kr)] exp(−iεit/~)Fis(r), (3)

where Fis(r) is the solution of the wave equation in the given field with the energy εi and in the

spin state s, eµ is the photon polarization vector, kµ(ω, k) is the photon 4-momentum, Jµ is

the current vector.

For the states with n À 1 the following approximation may be made

exp(−iεit/~)Fis(r) = Ψs(P) exp(−iHt/~)|i >, P
µ

= i~∂µ − eA
µ
, (4)
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where Ψs(P) is the operator form of the particle wave function in the spin state s in the given

field. This form may be obtained from the free wave function via substitution of the variables

by the operators: p → P, ε → H =
√

P2 + m2. In the coordinate representation |i >

is the solution of the Klein-Gordon equation in the given field. Substituting Eq.(4) into Eq.(3)

and taking into account that the Schrödinger operators, standing between the exponential factors

exp(±iHt/~), convert into the explicitly time-dependent Heisenberg operators of the dynamic

variables of the particle in the given field, we obtain the following formula for the matrix element

Eq.(3):

Ufi = 〈f |M |i〉 , (5)

where

M =
ie

2π
√
~ω

Z
dtΨ

+
s′(p){(e∗J), exp[i(ωt− kr(t))]}Ψs(p); (6)

here p(t), Jµ(t), r(t) are the Heisenberg operators of the particle momentum, current and

coordinates respectively, the brackets {,} denote the symmetrized product of operators. Note,

that Ψs(p) exp(−iHt/~) |i > is the operator solution of the wave equation.

We are interested in the transition probability with photon emission summed over final particle

state. Using the condition of the completeness of the states
P

f |f >< f | = 1 we obtain for
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the radiation probability

dwγ =< i|M+
M |i > d

3
k (7)

The next step of calculation is series of transformation of operators (”disentanglement”) in

Eqs.(7), (6). As a result one obtains

M =
e

2π
√
~ω

Z ∞

−∞
R(t) exp

�
i

kx(t)

ε− ~ω

�
dt =

e

2π
√
~ω

Z ∞

−∞
R(t) exp

�
i

Z t

0

kp(t′)

ε− ~ωdt
′
�

dt,

(8)

here R(t) = R(p(t)), R(p) is the matrix element for the free particles depending on the

particle spin, kp = ωH− kp, |i > is the state vector of the initial particle at the time t = 0,

and p(t) is the operator of momentum in the Heisenberg picture.

The very important result of the method is that the recoil at radiation is incorporated into

the theory in the universal form for any external field. There are two essentially different cases in

application of the quasiclassical operator (QO) method. In the first case moving and scattering in

a potential can be considered in classical terms: phase shifts are large, there is a correspondence

between the impact parameter and the momentum transfer. Therefore it is possible to use the

version of the QO method where one can substitute classical variables instead of operators in the
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expression for the process probability (see (BKp67),(BK68), (BKF72), (BLP82)). In the second

case, the process of scattering can’t be described in classical terms. However, for the process

where large angular momentum contributes, one can use the quasiclassical approximation for

description of scattering including the situation where the phase shifts are small . For example,

this formulation of the method must be applied for consideration of radiation from ultrarelativistic

particles at scattering on atoms in a media.

For the particle with spin 1/2 the function R(t) in Eq.(8) written in the two-component form

is (below we employ units such that ~ = 1)

R(t) = ϕ
+
s′(A+iσB)ϕs, A =

1

2

�
1 +

ε

ε′

�
ev, B =

ω

2ε′
e×b, b = n−v+

n
γ

, (9)

where v = v(t) is the particle velocity, ε′ = ε− ω, γ = ε/m.

6



Macroscopic case

Substituting Eq.(8) into Eq.(7) we get (t = (t1 + t2)/2, τ = t2 − t1)

dW ≡ dwγ

dt
=

α

(2π)2

d3k

ω

Z
R
∗
�

t +
τ

2

�
R

�
t− τ

2

�
× exp

�
−i

ε

ε′

�
kx

�
t +

τ

2

�
− kx

�
t− τ

2

���
dτ. (10)

In a magnetic field, as in the classical theory, the radiation takes place from a small part of the

trajectory on which the particle turns on an angle ∼ 1/γ. This means that one can expand the

integrand in Eq.(10) on τ powers. One obtains e.g. for the spectral distribution of the radiation

intensity

dI

du
=

αm2

π
√

3

u

(1 + u)4

�
(1 + (1 + u)

2
)K2/3(λ)− (1 + u)

Z ∞

λ

K1/3(z)dz

�
, (11)
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where Kν(z) is the MacDonald function,

u =
ω

ε′
, λ =

2u

3χ
, χ =

H

H0

ε

m
, (12)

here χ is the fundamental parameter. In the limit χ ¿ 1 one has classical theory.
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Microscopic case

We consider the applicability of the QO method to the problem of radiation from

ultrarelativistic particles at potential scattering. In this process the emitted photon and the

final electron are moving at a small angle to the initial electron momentum and the large angular

momenta l À 1 contribute. In this situation the quasiclassical scattering theory is applicable.

At very high energy of particles in a media, we can consider the case of complete screening,

so that

as ¿
1

qmin

=
2ε(ε− ω)

ωm2
≡ lf , (13)

where as is the screening radius (as ' 111Z−1/3λc, λc = 1/m), Z is the charge of a nucleus,

qmin is the minimal momentum transfer which is longitudinal (with respect to the momentum

of the initial electron p), lf is the radiation formation length for a small angle scattering on an

isolated atom. Note that in frame of the QO method the radiation problem is solved for the case

of arbitrary screening , see (BKF72). The impact parameters %, contributing into the scattering

cross section, are small comparing the formation length (% ≤ as ¿ l0) in a screened Coulomb
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potential. This means that the scattering of ultrarelativistic particles (the virtual electron is

close to the mass shell) takes place independently of radiation process (see, (BK69), (BKF72),

(BLP82)). Thus, we can present the cross section of radiation as a product of the probability of

photon emission with the momentum k at given momentum transfer q⊥ (q⊥p = 0), and the

cross section of particle scattering dσ(q⊥) with the same momentum transfer q⊥:

dσγ = Wγ(q⊥, k)d
3
kdσ(q⊥), (14)

where the probability of photon emission is given in Eq.(7).

We show below that in frame of the QO method the probability of radiation Wγ(q⊥, k) is

given by the trajectory of a particle in ”the form of an angle” in the momentum space

p(t) = ϑ(−t)p + ϑ(t)(p + q⊥), (15)

while the cross section dσ(q⊥) should be taken in the eikonal form.

If the formation time of radiation is much longer than the characteristic time of the scattering,
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one can present the dependence of the operator p(t) on the time in Eq.(8) as

p(t) = ϑ(−t)p(−∞) + ϑ(t)p(∞),

p⊥(−∞) ' p⊥ +

Z z

−∞
∇%V (%, z

′
)dz

′
, p⊥(∞) ' p⊥ −

Z ∞

z

∇%V (%, z
′
)dz

′
. (16)

It should be pointed out that in the case when the scattering process is of nonclassical character

the operators p(−∞) and p(∞) are noncommutative among themselves and, generally speaking,

one can’t neglect their commutator. But these approximate expressions have the classical form.

Substituting the ”trajectory” (16) in Eq.(8) we obtain

M =
ie(ε− ω)

2π
√

ω

�
R(p(∞))

kp(∞)
− R(p(−∞))

kp(−∞)

�
. (17)

For the derivation of the differential cross section of the bremsstrahlung in Eqs.(14), (7) it is

necessary to insert the projection operator |f >< f | between the operators M+ and M , and

to take |i > and |f > states so that the initial state is the eigenvector of the operator p(−∞)
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and the final state is the eigenvector of the operator p(∞):

p(−∞)|i >= pi|i >, |i >= exp

�
−i

Z z

−∞
V (%, z

′
)dz

′
�
|pi >,

p(∞)|f >= pf |f >, |f >= exp

�
i

Z ∞

z

V (%, z
′
)dz

′
�
|pf > (18)

Using (18) we deduce for the matrix element of the operator M Eq.(17)

Mfi =
ie(ε− ω)

2π
√

ω

�
R(pf)

kpf

− R(pi)

kpi

�
< f |i >,

< f |i >=< pf | exp

�
−i

Z ∞

−∞
V (%, z)dz

�
|pi >

=

Z
d

2
% exp [iq⊥% + iχ(%)] 2πδ(pf‖ − pi‖), (19)
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where

q⊥ = pi⊥ − pf⊥, χ(%) = −
Z ∞

−∞
V (%, z)dz (20)

In the centrally symmetric potential we have

χ(%) = −
Z ∞

−∞
V (
p

%2 + z2)dz, (21)

We introduce now the notations pi ≡ p, pf = p′+k where p′ is the momentum of electron after

photon emission. Then neglecting the terms of the order of q‖ in the argument of the δ-function

in Eq.(19) we have in the region q⊥ À q‖ which contributes for the potential considered

δ(pf‖ − pi‖) ' δ(ε
′
+ ω − ε), ε

′
=
p

p′2 + m2. (22)

Using this relation one can express the propagator kpf through the propagator kp′ (up to terms
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of the order 1/γ2)

kpf = ω
q

(p′ + k)2 + m2 − k(p′ + k)

= ω
p

ε2 − 2kp′ + kp
′ − ωε ' ωε

�
1− kp′

ε2

�
+ kp

′ − ωε =
ε′

ε
kp

′
. (23)

Our final result for the differential probability of radiation in Eq.(14) is therefore

Wγ(q⊥, k) =
α

(2π)2

1

ω

����εR(p′ + k)

kp′
− ε′R(p)

kp

����2 (24)

Using the Moliere approximation of the atomic potential for the phase χ(%) in Eq.(21) we

have for the spectrum of bremsstrahlung in the case of complete screening

dσ

dω
=

4Z2α3ε′

m2εω

��
ε

ε′
+

ε′

ε
− 2

3

��
ln(183Z

−1/3
)− f(Zα)

�
+

1

9

�
, (25)
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where

f(ξ) = ξ
2
Σ
∞
1

1

n(n2 + ξ2)
, . (26)

here the function f(ξ) is the Coulomb correction. In the Coulomb field the term 1/9 in square

brackets should be omitted and ln(183Z−1/3) should be substituted by ln(1/δ)− 1/2, where

δ = qmin/m = ωm/2εε′.
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Processes in Plane Wave and Constant Field(BKS91)

Substituting Eqs.(8),(9) into Eq.(7) and performing integration over photon emission angle

and summation over the polarization of final particles we obtain for the spectral distribution of

radiation the convenient form, in which all cancelations of the leading terms have already carried

out:

dwγ

dω
=

iα

8πγ2

Z Z
dtdτ

τ − i0

h
4 + β(∆1 −∆2)

2
i
exp

(
−iτ

lω

 
1 +

Z t2

t1

∆2
(t
′
)dt

′
!)

,

β =

�
ε

ε′
+

ε′

ε

�
, ∆1 = ∆(t1), ∆ = ∆(t) =

1

m
(p(t)− π),

π =
1

τ

Z t2

t1

p(t)dt, lω =
2εε′

m2ω
, (27)

where p = εv is the momentum of the particle. Obviously, the quantity ∆(t) is unaffected by

the substitution p(t) → p(t) + p0, where p0 is the time-independent momentum. To pursue
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the analysis we need explicit expressions for the momentum p(t) and the vector ∆(t) in the

field under consideration. We will carry out calculations in the frame of reference in which the

monochromatic plane wave, with the wave vector q = q(q0, q), is propagating in the direction

n = q/q0 opposite to the electron velocity. One can always find a relativistic frame of reference

(γ À 1) in which the condition q0 ¿ ε holds. This is necessary condition if we wish to treat

the plane wave as classical. Solving the equation of motion of the particle in the electromagnetic

field we get

p⊥
m

= Ωt + ξ(t), ξ(t) = ξ2 sin(νt + ϕ0) + ξ1 cos(νt + ϕ0)

Ω =
e

m
F⊥, F⊥ = E− n(nE) + H× n, ν = 2q0, ξn = 0. (28)

Here E and H are the electric and magnetic fields, both independent on the time, and the

orthogonal vectors ξ1,2 characterize the intensity ξ2
0 = (ξ2

1 + ξ2
2)/2 and the polarization of the

wave. The corresponding Stokes parameters are

λ3 =
ξ2
1 − ξ2

2

ξ2
1 + ξ2

2

, λ2 =
(ξ1 × ξ2)n

ξ2
0

. (29)
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Performing calculation we obtain the spectral probability of photon emission per unit time

d2wγ(t)

dtdy
=

dWγ

dy
=

iαm2

2πε

∞Z
−∞

dτ

τ − i0

�
1 +

�
ε

ε′
+

ε′

ε

�
m0

�
exp(−iuτΦ(ϕ, τ)). (30)

where

y =
ω

ε
, u =

y

1− y
, m0 = χ

2
τ

2
+ 2χη(ϕ)τ sin

sτ

2
+ ξ

2
0(1− λ3 cos 2ϕ) sin

2 sτ

2
,

Φ =
1

3
χ

2
τ

2
+

8

s2τ
χη(ϕ)

�
sin

sτ

2
− sτ

2
cos

sτ

2

�
+

ξ
2
0

�
1 +

2

s2τ2
(cos sτ − 1) +

λ3

sτ
cos 2ϕ

�
sin sτ +

2

sτ
(cos sτ − 1)

��
+ 1

η(ϕ) = ξ2 cos ϕ− ξ1 sin ϕ, ϕ = νt + ϕ0, τ → 2l0τ, l0 =
ε

m2
,

Ωl0 =
e

m
F⊥l0 = χ, 2νl0 =

4q0ε

m2
' 2qp

m2
= s (31)
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If the plane wave is absent (ξ1 = ξ2 = 0) Eq.(31) turns into the spectral probability in constant

field in the quasiclassical approximation. In absence of constant field (χ = 0) Eq.(31) turns into

the exact spectral probability in the monochromatic plane wave. In the case ξ0 ¿ 1 one can

expand the exponent in Eq.(31) over ξ(η) and retain terms ∝ ξ2
0:

dWγ = dW
F
γ + ξ

2
0dW

ξ
γ , (32)

where dW F
γ is the spectral probability in constant field and dW ξ

γ is connected with the cross

section of the Compton effect

dσc =
8παε

m2s
dW

ξ
γ . (33)

The cross section dσc describes the photon scattering on electron in the presence of an external

field.
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Radiation in Linear Colliders(BKS90, BK04)

The particle interaction at beam-beam collision in linear colliders occurs in an electromagnetic

field provided by the beams. The magnetic bremsstrahlung mechanism dominates and its

characteristics are determined by the value of the quantum parameter χ(t) dependent on the

strength of the incoming beam field at the moment t (the constant field limit) χ = γF/H0,

where F = |F|, F = E⊥+ v×H, E and H are the electric and magnetic fields in the laboratory

frame, E⊥ = E− v(vE).

The photon radiation length in an external field is

lc(χ, u) = λc

H0

F

�
1 +

χ

u

�1/3

=
λcγ

χ

�
1 +

χ

u

�1/3

, (34)

The field of the incoming beam changes very slightly along the formation length lc, if the condition

lc ¿ σz if satisfied, providing a high accuracy of the magnetic bremsstrahlung approximation.
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In the general case, when both polarization of electrons and photons it taken into account,

the spectral probability of radiation per unit time has the form

dwγ

dt
≡ dWγ(t) =

α

2
√

3πγ2
Φ

ζ
γ(1 + (λξ))dω; Φ

ζ
γ = Φγ +

ω

ε
(ζh)K1/3(z),

Φγ(t) = βK2/3(z)−
Z ∞

z

K1/3(y)dy, β =
ε

ε′
+

ε′

ε
(35)

where z = 2u/3χ(t), λ(λ1, λ2, λ3) are the Stokes parameters of emitted photons for the

following choice of axes: e1 = (v × h), h = F∗/F, e2 = h, F∗ = e/|e|[H⊥ + (E × v)],

ζ is the spin vector of the initial electron in its rest frame. The vector ξ determines the mean

photon polarization and its components are given by the following expressions:

ξ1 =
ω(ζvh)

ε′Φζ
γ

K1/3(z), ξ2 =
(ζv)

Φζ
γ

"�
ε

ε′
− ε′

ε

�
K2/3(z)− ω

ε

Z ∞

z

K1/3(y)dy

#
,

ξ3 =
1

Φζ
γ

�
K2/3(z) +

ω

ε′
(ζh)K1/3(z)

�
, (36)
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here (ζvh) = ζ(v × h).

Here we consider radiation from unpolarized electrons. The spectral probability of radiation

is (35)
dwγ

dω
=

α

πγ2
√

3

Z ∞

−∞
Φγ(t)dt. (37)

For the Gaussian beams

χ(t) = χ0(x, y) exp(−2t
2
/σ

2
z), (38)

here the function χ0(x, y) depends on transverse coordinates.

It turns out that for the Gaussian beams the integration of the spectral probability over time

can be carried out in a general form:

dwγ

du
=

αmσz

πγ
√

6

1

(1 + u)2

"�
1 + u +

1

1 + u

�Z ∞

1

K2/3 (ay)
dy

y
√

ln y

−2a

Z ∞

1

K1/3 (ay)
p

ln y dy

#
, (39)

22



where a = 2u/3χ0. In the case when χ0 ¿ 1 the main contribution into integral (39) gives

the region y = 1 + ξ, ξ ¿ 1. Taking the integrals over ξ we obtain

dwCF
γ

du
'
√

3αmσz

4γ

1 + u + u2

u(1 + u)3
χ0 exp

�
− 2u

3χ0

�
(40)

For round beams the integration over transverse coordinates is performed with the density

n⊥(%) =
1

2πσ2
⊥

exp

 
− %2

2σ2
⊥

!
(41)

The parameter χ0(%) we present in the form

χ0(%) = χm

f(x)

f0

, x =
%

σ⊥
, f(x) =

1

x

�
1− exp(−x

2
/2)
�

,

χrd = 0.720αNγ
λ2

c

σzσ⊥
, f

′
(x0) = 0, f0 = f(x0) = 0.451256, (42)
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where N is the number of electron in the bunch.
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Figure 1: Spectral intensity of radiation of round beams in units αm2σz for
χrd=0.13 calculated according to Eqs.(39),(42)
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The Laplace integration of Eq.(40) gives for radiation intensity dI/du = εu/(1+u)dW/du

dIas

du
' αm

2
σz

3

4

s
π

|f ′′0 |
1 + u + u2

√
u(1 + u)4

f
3/2
0 χ

3/2
rd exp

�
− 2u

3χm

�
, (43)

where f ′′0 = f ′′(x0) = −0.271678.

For the flat beams (σx À σy) the parameter χ0(%) takes the form

χ0 = χm exp

 
− x2

2σ2
x

!"
eyerf

 
y√
2σy

!
− iexerf

�
i

x√
2σx

�#
, χm =

2Nαγλ2
c

σzσx

, (44)

here erf(z) = 2/
√

π
R z

0
exp(−t2)dt, ex and ey are the unit vectors along the corresponding

axes.
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To calculate the asymptotic of radiation intensity for the case χ0 ¿ 1 one has to substitute

χ0 = |χ0| = χm exp

 
− x2

2σ2
x

!" 
erf

 
y√
2σy

!!2

+

�
−ierf

�
i

x√
2σx

��2
#1/2

(45)

into Eq.(40) and take integrals over transverse coordinates x, y with the weight

n⊥(x, y) =
1

2πσxσy

exp

 
− x2

2σ2
x

− y2

2σ2
y

!
. (46)

Integral over x can be taken using the Laplace method, while for integration over y it is convenient

to introduce the variable

η =
2√
π

Z ∞

w

exp(−t
2
)dt, w =

y√
2σy

. (47)
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As a result we obtain for the radiation intensity in the case of flat beams

dIfl

du
=

9

8
p

2 (1− 2/π)
αm

2
σzχ

5/2
m

1 + u + u2

u3/2(1 + u)4
exp

�
− 2u

3χm

�
. (48)
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Inhomogeneous Fields

If the field varies slightly on the photon formation length, the vector ∆(t2) in Eq.(27) as

well as the exponential factor can be expanded in powers of t2 − t1 = τ , with required number

of expansion terms.The first terms of the expansion which incorporates the particle acceleration,

give the constant field limit, while remaining terms are the correction to this approximation. As
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the result the spectral intensity of radiation can be presented in the form

dI

dω
=

dI0

dω
+

dIc

dω
,

dI0

dω
=

αm2ω√
3πε2

24βK2/3(z)−
∞Z

z

K1/3(y)dy

35
dIc

dω
=

αm2ω√
3πε2

(
− 1

3b4

"
(b(V∇)

2b)β

�
K2/3(z)− 2

3z
K1/3(z)

�
− 1

10

h
((V∇)b)

2
+ 3(b(V∇)

2b)
i

×
�
zK1/3(z)− 4

3
K2/3(z) + β

�
4K2/3(z)−

�
z +

16

9z

�
K1/3(z)

��#)
, (49)

where β is defined in Eq.(35),

z =
2m2ω

3εε′|b|, b =
eF
m

, (50)

the vector V is the difference between the velocity of particle and the opposite beam (in the
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case when the beam shape is not changed during the collision). Here dI0/dω is the intensity

spectrum in magnetic bremsstrahlung limit, dIc/dω is the gradient correction.
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General Theory of Radiation in Oriented Crystal

Here we consider case ϑ0 ¿ V0/m. Than the distance of an electron from axis % as well

as the transverse field of the axis can be considered as constant over the formation length. For

an axial orientation of crystal the ratio of the atom density n(%) in the vicinity of an axis to the

mean atom density na is

n(x)

na

= ξ(x) =
x0

η1

e
−x/η1, ε0 =

εe

ξ(0)
, (51)

where

x0 =
1

πdnaa2
s

, η1 =
2u2

1

a2
s

, x =
%2

a2
s

, (52)

Here % is the distance from axis, u1 is the amplitude of thermal vibration, d is the mean distance
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between atoms forming the axis, as is the effective screening radius of the axis potential

U(x) = V0

�
ln

�
1 +

1

x + η

�
− ln

�
1 +

1

x0 + η

��
. (53)

The local value of parameters χ(x) , see Eq.(12), which determines the radiation probability in

the field Eq.(53) is

χ(x) = −dU(%)

d%

ε

m3
= χsfa, fa =

2
√

x

(x + η)(x + η + 1)
, χs =

V0ε

m3as

≡ ε

εs

. (54)

The particular calculation below will be done for tungsten and germanium crystals studied

experimentally. The relevant parameters are given in Table 1.
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Table 1 Parameters of radiation (pair creation) process in the tungsten

(the axis < 111 >) and germanium (the axis < 110 >) crystals for different temperatures T,

the energies ε and ω are in GeV

Crystal T(K) V0(eV) x0 η1 η ε0 εt εs(ωs) εm(ωm) h

W 293 413 39.7 0.108 0.115 7.43 0.76 34.8 14.35 0.348

W 100 355 35.7 0.0401 0.0313 3.06 0.35 43.1 8.10 0.612

Ge 100 114.5 19.8 0.064 0.0633 59 0.85 179 51 0.459
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The spectral intensity of radiation can be presented in the form

dI(ε, y) =
αm2

2π

ydy

1− y

x0Z
0

dx

x0

G(x, y), G(x, y) =

∞Z
0

F (x, y, t)dt− r3

π

4
,

F (x, y, t) = Im
n

e
ϕ1(t)

h
r2ν

2
0(1 + ib)ϕ2(t) + r3ϕ3(t)

io
, b =

4χ2(x)

u2ν2
0

,

y =
ω

ε
, u =

y

1− y
, ϕ1(t) = (i− 1)t + b(1 + i)(f2(t)− t),

ϕ2(t) =

√
2

ν0

tanh
ν0t√

2
, ϕ3(t) =

√
2ν0

sinh(
√

2ν0t)
(55)
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where

r2 = 1 + (1− y)
2
, r3 = 2(1− y), ν

2
0 =

1− y

y

ε

εc(x)
, εc(x) =

εe(na)

ξ(x)g
=

ε0

g
e

x/η1,

εe =
m

16πZ2α2λ3
cnaL0

, L0 = ln(183Z
−1/3

)− f(Zα),

h(z) = −1

2
[1 + (1 + z)e

z
Ei(−z)] , g = 1 +

1

L0

"
1

18
− h

 
u2

1

a2

!#
, (56)

The found spectral intensity of radiation contains very reach information. The intensity of

coherent radiation I(ε) =
R

Icoh(ε, y)dy is the first term (ν2
0 = 0) of the decomposition of

Eq.(55) over ν2
0 .

I
coh

(ε) =

x0Z
0

I(χ)
dx

x0

. (57)

Here I(χ) is the radiation intensity in constant field (magnetic bremsstrahlung limit). It is
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convenient to use the following representation for I(χ)

I(χ) = i
αm2

2π

λ+i∞Z
λ−i∞

 
χ2

3

!s

Γ (1− s) Γ (3s− 1) (2s−1)(s
2−s+2)

ds

cos πs
,

1

3
< λ < 1.

(58)

The second term of the decomposition of Eq.(55)(∝ ν2
0) gives the intensity of incoherent

radiation:

I
inc

(ε) =
αm2

60π

ε

ε0

g

x0Z
0

e
−x/η1J(χ)

dx

x0

, (59)

the new representation of J(χ) is

J(χ) =
iπ

2

λ+i∞Z
λ−i∞

χ2s

3s

Γ(1 + 3s)

Γ(s)
R(s)

ds

sin2 πs
, −1

3
< λ < 0 (60)
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where

R(s) = 15 + 43s + 31s
2
+ 28s

3
+ 12s

4
. (61)

The inverse radiation length in tungsten crystal (axis < 111 >) 1/Lcr(ε) = I(ε)/ε Eq.(55), as

well as the coherent contribution 1/LF (ε) = IF (ε)/ε Eq.(57) and the incoherent contribution

1/Linc(ε) = Iinc(ε)/ε Eq.(59) are shown in Fig.1 for two temperatures T=100 K and T=293

K as a function of incident electron energy ε. One can see that at temperature T=293 K the

intensity Icoh(ε) is equal to Iinc(ε) at ε ' 0.4 GeV and temperature T=100 K the intensity

Icoh(ε) is equal to Iinc(ε) at ε ' 0.7 GeV. At higher energies the intensity IF (ε) dominates

while the intensity Iinc(ε) decreases monotonically.
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Figure 2: The inverse radiation length in tungsten, axis < 111 > at different
temperatures T vs the electron initial energy. Curves 1 and 4 are the total
effect: Lcr(ε)−1 = I(ε)/ε Eq.(55) for T=293 K and T=100 K correspondingly,
the curves 2 and 5 give the coherent contribution IF (ε)/ε Eq.(57), the curves
3 and 6 give the incoherent contribution Iinc(ε)/ε Eq.(59) at corresponding
temperatures T.
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Figure 3: Comparison of theory and experiment.(a) Enhancement of radiation
intensity (the ratio LBM/Lef) in tungsten, axis < 111 >, T=293 K. The curve
1 is for the target with thickness l = 200 µm, where the energy loss was taken
into account. The curve 2 is for a considerably more thinner target, where one
can neglect the energy loss (Lef → Lcr). The data are from K.Kirshbom, et al,
2001.
(b) Enhancement of the probability of pair creation in tungsten for different
temperatures, axis < 111 >. The data are from K.Kirshbom, et al, 1998.
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Back-reaction: spectra of radiation taking into account
energy loss in oriented crystals

The crystal radiation length L(ε) = ε/I(ε), I(ε) is the intensity of electron radiation, and

the pair creation length Lpr(ω) = 1/W (ω), W (ω) is the pair creation probability, are the

function of energy in oriented crystals.

We consider the case when the target thickness l is of the order l ∼ L(ε) in the intermediate

energy region. Here we will neglect the energy dispersion. On this assumption the energy loss

equation acquires the form

dt =
L(ε)

ε
dε, t(ε, ε0) =

ε0Z
ε

dx

x
L(x), ε = ε(ε0, t) (62)

Now the photon spectral distribution taking into account the energy loss can be written in the
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form

ω
dnγ

dω
=

lZ
0

dI(ε(ε0, t), ω)

dω
ϑ(ε(ε0, t)− ω)dt

=

ε0Z
εl

L(ε)

ε

dI(ε, ω)

dω
ϑ(ε− ω)dε, εl = ε(ε0, l), (63)

where dI(ε, ω)/dω is radiation intensity spectral distribution (see Eq.(55)), εl = ε(ε0, l) is the

electron energy after traversing the thickness l by the electron with the initial energy ε0. The

result of calculation for tungsten crystal is shown in Fig.4.
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