External field QED calculations the method of Nikishov and Ritus et al

Anthony Hartin

Advanced QED for future colliders Workshop

Mar 3, 2009

Anthony Hartin The method of Nikishov and Ritus et al

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Methodology

Use Furry picture to include the external field

ヘロン 人間 とくほとく ほとう

E 990

Methodology

- Use Furry picture to include the external field
- Volkov Solution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ∽ � � �

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field

・ 同 ト ・ ヨ ト ・ ヨ ト …

E DQC

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules

(雪) (ヨ) (ヨ)

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture

通 と く ヨ と く ヨ と

ъ

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions

通 と く ヨ と く ヨ と

ъ

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions
 - Specific Volkov representation for constant crossed field

通 と く ヨ と く ヨ と

æ

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions
 - Specific Volkov representation for constant crossed field
 - Fourier Transform of the Volkov solutions

通 と く ヨ と く ヨ と

э.

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions
 - Specific Volkov representation for constant crossed field
 - Fourier Transform of the Volkov solutions
 - Phase Integral calculation

個 とく ヨ とく ヨ とう

э.

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions
 - Specific Volkov representation for constant crossed field
 - Fourier Transform of the Volkov solutions
 - Phase Integral calculation
 - The Beamstrahlung Transition Rate

個 とく ヨ とく ヨ とう

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions
 - Specific Volkov representation for constant crossed field
 - Fourier Transform of the Volkov solutions
 - Phase Integral calculation
 - The Beamstrahlung Transition Rate
 - Comparison with Operator method

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

E DQC

Methodology

- Use Furry picture to include the external field
- Volkov Solution
- Dressed momentum and mass shift
- Propagator in the external field
- Modified Feynman rules
- Beamstrahlung example
 - Tree level with respect to the Furry Picture
 - Only consider unpolarised fermions
 - Specific Volkov representation for constant crossed field
 - Fourier Transform of the Volkov solutions
 - Phase Integral calculation
 - The Beamstrahlung Transition Rate
 - Comparison with Operator method

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

E DQC

- By the Nikishov and Ritus method I refer to a series of papers beginning in 1964 in which many of the first order external field
- There were other collaborators and independent calculations as well!

- By the Nikishov and Ritus method I refer to a series of papers beginning in 1964 in which many of the first order external field
- There were other collaborators and independent calculations as well!
- Am presenting Nikishov and Ritus method because this is the method I learnt first
- It is interesting to compare with the Operator method

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- By the Nikishov and Ritus method I refer to a series of papers beginning in 1964 in which many of the first order external field
- There were other collaborators and independent calculations as well!
- Am presenting Nikishov and Ritus method because this is the method I learnt first
- It is interesting to compare with the Operator method
- Generally, the Nikishov-Ritus method produces complicated expressions
- I want to perform calculations to first order as efficiently as possible in order to extend to higher orders

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- By the Nikishov and Ritus method I refer to a series of papers beginning in 1964 in which many of the first order external field
- There were other collaborators and independent calculations as well!
- Am presenting Nikishov and Ritus method because this is the method I learnt first
- It is interesting to compare with the Operator method
- Generally, the Nikishov-Ritus method produces complicated expressions
- I want to perform calculations to first order as efficiently as possible in order to extend to higher orders
- I work in natural units ħ, c = 1. I usually write scalar products of 4-vectors (kp)
- I often refer to dimensionless quantities like $\frac{\hbar\omega}{mc^2}$ just as ω

▶ ★ 臣 ▶ …

Figure: External field 3 vectors and photon scattering angles.

 Interactions involving intense lasers are characterised usually involve a circularly polarized field

$$A_{\mu} = a_{1\mu}\cos(kx) + a_{2\mu}\sin(kx)$$

Figure: External field 3 vectors and photon scattering angles.

 Interactions involving intense lasers are characterised usually involve a circularly polarized field

$$A_{\mu} = a_{1\mu}\cos(kx) + a_{2\mu}\sin(kx)$$

The Lorentz condition implies $(a_1k), (a_2k) = 0$ so

$$(\vec{a}_1, \vec{a}_2, \vec{k}); |\vec{a}_1| = |\vec{a}_2| = a^2$$

Figure: External field 3 vectors and photon scattering angles.

 Interactions involving intense lasers are characterised usually involve a circularly polarized field

$$A_{\mu} = a_{1\mu}\cos(kx) + a_{2\mu}\sin(kx)$$

The Lorentz condition implies $(a_1k), (a_2k) = 0$ so

$$(\vec{a}_1, \vec{a}_2, \vec{k}); |\vec{a}_1| = |\vec{a}_2| = a^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

These vectors form the coordinate system

• $\frac{e^2a^2}{m^2}$ and $\frac{\omega}{m}$ are the external field intensity and energy

Figure: External field 3 vectors and photon scattering angles.

 Interactions involving intense lasers are characterised usually involve a circularly polarized field

$$A_{\mu} = a_{1\mu}\cos(kx) + a_{2\mu}\sin(kx)$$

The Lorentz condition implies $(a_1k), (a_2k) = 0$ so

$$(\vec{a}_1, \vec{a}_2, \vec{k}); |\vec{a}_1| = |\vec{a}_2| = a^2$$

These vectors form the coordinate system

 ^{e²a²}/_{m²} and ^ω/_m are the external field intensity and energy

 For a general 4-vector Q_μ

$$(kQ) = 0 \implies (a_1Q)^2 + (a_2Q)^2 = a^2Q^2$$

Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it

프 에 에 프 어 - -

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - The formation length is shorter than the bunch length

★ E ► ★ E ►

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - The formation length is shorter than the bunch length
 - > The formation length is shorter than the field wavelength

< 回 > < 回 > < 回 > -

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - The formation length is shorter than the bunch length
 - > The formation length is shorter than the field wavelength
 - > The particle is relativistic

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - The formation length is shorter than the bunch length
 - > The formation length is shorter than the field wavelength
 - The particle is relativistic
- Then the field can be considered to be a constant crossed field $A_{\mu} = a_{1\mu}(kx)$
- The Lorentz condition $(a_1k) = 0$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - The formation length is shorter than the bunch length
 - The formation length is shorter than the field wavelength

The particle is relativistic

- Then the field can be considered to be a constant crossed field A_µ = a_{1µ}(kx)
- The Lorentz condition $(a_1k) = 0$

• If
$$(kQ) = 0$$
 now $(a_1Q)^2 = a^2(Q^2 - Q_y^2)$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - > The formation length is shorter than the bunch length
 - The formation length is shorter than the field wavelength

The particle is relativistic

- Then the field can be considered to be a constant crossed field A_µ = a_{1µ}(kx)
- The Lorentz condition $(a_1k) = 0$
- If (kQ) = 0 now $(a_1Q)^2 = a^2(Q^2 Q_y^2)$
- For constant crossed field, $\omega \to 0 \; \frac{e^2 a^2}{m^2} \to \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Formation length is the distance travelled by a charged particle while a radiated photon moves one wavelength in front of it
- If the intense particle bunch fields in particle collider collisions are such that
 - > The formation length is shorter than the bunch length
 - > The formation length is shorter than the field wavelength

The particle is relativistic

- Then the field can be considered to be a constant crossed field $A_{\mu} = a_{1\mu}(kx)$
- The Lorentz condition $(a_1k) = 0$
- If (kQ) = 0 now $(a_1Q)^2 = a^2(Q^2 Q_y^2)$
- For constant crossed field, $\omega \to 0 \ \frac{e^2 a^2}{m^2} \to \infty$
- The physically meaningful quantity is $B = |\vec{a}_1|\omega$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Volkov solution is a solution of the second order Dirac equation containing the external potential

$$[(p - eA)^2 - m^2 - \frac{e}{2}\sigma^{\mu\nu}F_{\mu\nu}]\Psi = 0$$

・ロン ・聞 と ・ ヨ と ・ ヨ と

E 990

The Volkov solution is a solution of the second order Dirac equation containing the external potential

$$[(p - eA)^2 - m^2 - \frac{e}{2}\sigma^{\mu\nu}F_{\mu\nu}]\Psi = 0$$

- In the Lorentz gauge $k^{\mu}A_{\mu} = 0$ we have $\sigma^{\mu\nu}F_{\mu\nu} = 2ikA'$
- Propose a general solution $\Psi = \exp(-ip x)E_p(x)u(p)$

ヘロン 人間 とくほ とくほ とう

The Volkov solution is a solution of the second order Dirac equation containing the external potential

$$[(p - eA)^2 - m^2 - \frac{e}{2}\sigma^{\mu\nu}F_{\mu\nu}]\Psi = 0$$

- ▶ In the Lorentz gauge $k^{\mu}A_{\mu} = 0$ we have $\sigma^{\mu\nu}F_{\mu\nu} = 2i k A'$
- Propose a general solution $\Psi = \exp(-ip.x)E_p(x)u(p)$
- Substitution of the general solution yields

$$2i(kp)E'_{p}(x) + [e^{2}A^{2} - 2e(Ap) - iek A']E_{p}(x) = 0$$
$$E_{p}(x) = \exp\left(\frac{e}{2(kp)}kA - iS(x)\right)$$
$$S(x) = -i\int_{0}^{k.x} \left[\frac{e(Ap)}{(kp)} - \frac{e^{2}A^{2}}{2(kp)}\right]d\phi$$

ヘロト 人間 ト くほ ト くほ トー

 The Volkov solution is a solution of the second order Dirac equation containing the external potential

$$[(p - eA)^2 - m^2 - \frac{e}{2}\sigma^{\mu\nu}F_{\mu\nu}]\Psi = 0$$

- In the Lorentz gauge $k^{\mu}A_{\mu} = 0$ we have $\sigma^{\mu\nu}F_{\mu\nu} = 2ikA'$
- Propose a general solution $\Psi = \exp(-ip.x)E_p(x)u(p)$
- Substitution of the general solution yields

$$2i(kp)E'_{p}(x) + [e^{2}A^{2} - 2e(Ap) - ie\not kA']E_{p}(x) = 0$$
$$E_{p}(x) = \exp\left(\frac{e}{2(kp)}\not kA - iS(x)\right)$$
$$S(x) = -i\int_{0}^{k.x} \left[\frac{e(Ap)}{(kp)} - \frac{e^{2}A^{2}}{2(kp)}\right]d\phi$$

> Expand the exponential term in a series and use k k = 0 and the Lorentz condition (Ak) = 0

$$\Psi_p^V(x) = \left(1 + \frac{e \not k \not A}{2(kp)}\right) \exp(iS(x))u(p)$$

Substitute particular A_{μ} into the Volkov S function

・ 同 ト ・ ヨ ト ・ ヨ ト

- Substitute particular A_{μ} into the Volkov S function
- For a circularly polarised field we naturally get an interpretation in terms of photons and a mass shift

$$S(x) = -\left[(px) + \frac{e^2a^2}{2(kp)}(kx) + \frac{e(a_1p)}{(kp)}\sin(kx) - \frac{e(a_1p)}{(kp)}\cos(kx)\right]$$

- Substitute particular A_{μ} into the Volkov S function
- For a circularly polarised field we naturally get an interpretation in terms of photons and a mass shift

$$S(x) = -\left[(px) + \frac{e^2 a^2}{2(kp)}(kx) + \frac{e(a_1p)}{(kp)}\sin(kx) - \frac{e(a_1p)}{(kp)}\cos(kx) \right]$$

- The 'dressed' 4 momentum $q_{\mu} \equiv p_{\mu} + \frac{e^2 a^2}{2k_{\mu}}$
- The mass shift is $q^2 \equiv m^2 + e^2 a^2$
- The whole Volkov solution can be expressed in terms of the dressed momentum, since

$$(a_1q) = (a_1p), (kq) = (kp)$$

- Substitute particular A_{μ} into the Volkov S function
- For a circularly polarised field we naturally get an interpretation in terms of photons and a mass shift

$$S(x) = -\left[(px) + \frac{e^2 a^2}{2(kp)}(kx) + \frac{e(a_1p)}{(kp)}\sin(kx) - \frac{e(a_1p)}{(kp)}\cos(kx) \right]$$

- The 'dressed' 4 momentum $q_{\mu} \equiv p_{\mu} + \frac{e^2 a^2}{2k_{\mu}}$
- The mass shift is $q^2 \equiv m^2 + e^2 a^2$
- The whole Volkov solution can be expressed in terms of the dressed momentum, since

$$(a_1q) = (a_1p), (kq) = (kp)$$

A discrete Fourier Transform of $\exp(iS(x))$ gives contributions nk_{μ}

$$\exp(iS(x)) = \sum_{n=-\infty}^{\infty} F(n, nk_{\mu})$$

For a constant crossed field an interpretation in terms of external field photons is not required

$$S(x) = -[(px) + \frac{e(a_1p)}{2(kp)}(kx)^2 - \frac{e^2a^2}{6(kp)}(kx)^3]$$

크 > 크

For a constant crossed field an interpretation in terms of external field photons is not required

$$S(x) = -[(px) + \frac{e(a_1p)}{2(kp)}(kx)^2 - \frac{e^2a^2}{6(kp)}(kx)^3]$$

We could introduce the dressed momentum but it doesn't emerge 'naturally'

For a constant crossed field an interpretation in terms of external field photons is not required

$$S(x) = -[(px) + \frac{e(a_1p)}{2(kp)}(kx)^2 - \frac{e^2a^2}{6(kp)}(kx)^3]$$

- We could introduce the dressed momentum but it doesn't emerge 'naturally'
- Any mass shift $p^2 = m^2 + e^2 a^2$ woud be problematic since $e^2 a^2 \to \infty$

For a constant crossed field an interpretation in terms of external field photons is not required

$$S(x) = -[(px) + \frac{e(a_1p)}{2(kp)}(kx)^2 - \frac{e^2a^2}{6(kp)}(kx)^3]$$

- We could introduce the dressed momentum but it doesn't emerge 'naturally'
- Any mass shift $p^2 = m^2 + e^2 a^2$ woud be problematic since $e^2 a^2 \to \infty$
- A Fourier transform gives an integration over external field energy rather than a sum of contributions

$$\exp(iS(x)) = \int dr F(r) \exp(-ir(kx))$$

Fermion propagator in the external potential

The Volkov solution can be written as a product of Volkov E functions and the bispinor

$$\Psi_p^V(x) \equiv E_p(x)u(p)$$

프 🖌 🛪 프 🛌

ъ

Fermion propagator in the external potential

The Volkov solution can be written as a product of Volkov E functions and the bispinor

$$\Psi_p^V(x) \equiv E_p(x)u(p)$$

The Volkov E function can be shown to have the properties of orthogonality and completeness (Ritus Ann Phys 69 555-582 (1970), Bergou and Varro, J Phys A 13, 2823)

$$\int d^4x \overline{E}_{p_f}(x) \underline{E}_{p_i}(x) = \delta(p_f - p_i)$$
$$\int d^4x \underline{E}_p(x_1) \overline{E}_p(x_2) = \delta(x_1 - x_2)$$

Fermion propagator in the external potential

The Volkov solution can be written as a product of Volkov E functions and the bispinor

$$\Psi_p^V(x) \equiv E_p(x)u(p)$$

The Volkov E function can be shown to have the properties of orthogonality and completeness (Ritus Ann Phys 69 555-582 (1970), Bergou and Varro, J Phys A 13, 2823)

$$\int d^4 x \overline{E}_{p_f}(x) \underline{E}_{p_i}(x) = \delta(p_f - p_i)$$
$$\int d^4 x E_p(x_1) \overline{E}_p(x_2) = \delta(x_1 - x_2)$$

using these properties the fermion propagator in an external field can be written as the usual fermion propagator sandwiched between Volkov E functions

$$G(x_2, x_1) = \int d^4 p E_p(x_2) \frac{\not p + m}{p^2 - m^2 + i\epsilon} \overline{E}_p(x_1)$$

Figure: The 1st order vertex with an external field.

ヘロン 人間 とくほ とくほ とう

Figure: The 1st order vertex with an external field.

- Photon lines are unaffected, fermion lines represent the Volkov solutions
- Fermion bispinors are unchanged, so spin sums as usual

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Figure: The 1st order vertex with an external field.

- Photon lines are unaffected, fermion lines represent the Volkov solutions
- Fermion bispinors are unchanged, so spin sums as usual
- Can treat the Volkov E functions as adjacent to the vertex
- So only a modified vertex is necessary

$$\Gamma^e_{\mu} = \int d^4x \overline{E}_{p_f}(x) \gamma_{\mu} E_{p_i}(x) \exp(-i(k_f x))$$

프 🕨 🗆 프

Figure: The 1st order vertex with an external field.

- Photon lines are unaffected, fermion lines represent the Volkov solutions
- Fermion bispinors are unchanged, so spin sums as usual
- Can treat the Volkov E functions as adjacent to the vertex
- So only a modified vertex is necessary

$$\Gamma^e_{\mu} = \int d^4x \overline{E}_{p_f}(x) \gamma_{\mu} E_{p_i}(x) \exp(-i(k_f x))$$

Substitute the Volkov E functions

$$(k.x)^{n} \exp(iS(x)) \ ; \ n = 0, 1, 2$$
$$S(x) = -\int_{0}^{(kx)} \left[\frac{e(Ap)}{(kp)} - \frac{e^{2}A^{2}}{2(kp)}\right] d\phi$$

> To simplify the x dependence take the Fourier Transform

프 에 에 프 어 - -

 To simplify the x dependence take the Fourier Transform
 lets assume a constant crossed external field, so it will be a continuous Fourier Transform

$$(kx)^n \exp(iS(x)) = \int dr \ F_n(r) \exp(-ir(kx))$$

 $F_n(r) = \int_{-\infty}^{\infty} dt \ t^n \exp(irt + iS(t))$

Lets call the functions F, auxillary functions

 To simplify the x dependence take the Fourier Transform
 lets assume a constant crossed external field, so it will be a continuous Fourier Transform

$$kx)^{n} \exp(iS(x)) = \int dr \ F_{n}(r) \exp(-ir(kx))$$
$$F_{n}(r) = \int_{-\infty}^{\infty} dt \ t^{n} \exp(irt + iS(t))$$

Lets call the functions F, auxillary functionsOur modified vertex in momentum space is then

$$\Gamma_{\mu} = (2\pi)^4 \int dr E_p(r) \gamma_{\mu} E_{p_i}(r) \delta^4(p_f + k_f - p_i - rk)$$

Explicit modified vertex

- When squaring a matrix function, we need to simplify products of F functions
- The F function are explicitly

$$\begin{split} F_n(r) &= \int_{-\infty}^{\infty} dt \exp(irt + i(aP)t^2 + i\frac{1}{3}Qt^3) \\ P^{\mu} &= \frac{e}{2} \left(\frac{p_f^{\mu}}{(kp_f)} - \frac{p_i^{\mu}}{(kp_i)} \right) \; ; \; Q = \frac{e^2a^2}{2} \frac{(kkf)}{(kp_i)(kp_f)} \end{split}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

∃ 𝒫𝔅

Explicit modified vertex

- When squaring a matrix function, we need to simplify products of F functions
- The F function are explicitly

$$\begin{split} F_n(r) &= \int_{-\infty}^{\infty} dt \exp(irt + i(aP)t^2 + i\frac{1}{3}Qt^3) \\ P^{\mu} &= \frac{e}{2} \left(\frac{p_f^{\mu}}{(kp_f)} - \frac{p_i^{\mu}}{(kp_i)} \right) \ ; \ Q &= \frac{e^2a^2}{2} \frac{(kkf)}{(kp_f)(kp_f)} \end{split}$$

After suitable change of variables we eliminate the t² term and the coefficient Q in the t³ and the result is

$$\begin{split} F_0(r) &= Q^{-\frac{1}{3}}\mathsf{Ai}(z)\exp(-irQ^{-1}(aP))e^{-ir\frac{(aP)}{Q}}\\ F_1(r) &= Q^{-\frac{2}{3}}[Q^{-\frac{2}{3}}(aP)\mathsf{Ai}(z) - \mathsf{i}\;\mathsf{Ai'}(z)]e^{-ir\frac{(aP)}{Q}}\\ F_2(r) &= Q^{-\frac{4}{3}}[(2Q^{-1}(aP)^2 - r)\mathsf{Ai}(z) + \mathsf{i}\;2Q^{-\frac{1}{3}}(aP)\mathsf{Ai'}(z)]e^{-ir\frac{(aP)}{Q}}\\ \text{where } z &= Q^{-\frac{1}{3}}(r - Q^{-1}(aP)) \end{split}$$

ヘロト ヘアト ヘビト ヘビト

Explicit modified vertex

- When squaring a matrix function, we need to simplify products of F functions
- The F function are explicitly

$$\begin{split} F_n(r) &= \int_{-\infty}^{\infty} dt \exp(irt + i(aP)t^2 + i\frac{1}{3}Qt^3) \\ P^{\mu} &= \frac{e}{2} \left(\frac{p_f^{\mu}}{(kp_f)} - \frac{p_i^{\mu}}{(kp_i)} \right) \; ; \; Q = \frac{e^2a^2}{2} \frac{(kkf)}{(kp_i)(kp_f)} \end{split}$$

After suitable change of variables we eliminate the t² term and the coefficient Q in the t³ and the result is

$$\begin{split} F_0(r) &= Q^{-\frac{1}{3}}\mathsf{Ai}(z)\exp(-irQ^{-1}(aP))e^{-ir\frac{(aP)}{Q}}\\ F_1(r) &= Q^{-\frac{2}{3}}[Q^{-\frac{2}{3}}(aP)\mathsf{Ai}(z) - \mathsf{i}\;\mathsf{Ai'}(z)]e^{-ir\frac{(aP)}{Q}}\\ F_2(r) &= Q^{-\frac{4}{3}}[(2Q^{-1}(aP)^2 - r)\mathsf{Ai}(z) + \mathsf{i}\;2Q^{-\frac{1}{3}}(aP)\mathsf{Ai'}(z)]e^{-ir\frac{(aP)}{Q}}\\ \text{where } z &= Q^{-\frac{1}{3}}(r - Q^{-1}(aP)) \end{split}$$

> Finally the modified vertex in a constant crossed field is

$$\begin{split} \Gamma^e_{\mu} &= \\ (2\pi)^4 \int dr \left[\gamma_{\mu} F_0(r) + \frac{e}{2} \left(\frac{\not k k \gamma_{\mu}}{(kp_f)} - \frac{\gamma_{\mu} \not k k}{(kp_f)} \right) F_1(r) + \frac{e^2 a^2 k \gamma_{\mu} \not k}{4(kp_f)(kp_f)} F_2(r) \right] \end{split}$$

- The square of the matrix element and spin sums proceed as usual, resulting in a trace over gamma matrices
- Transition rate includes two integrations r, r' over contributions from the external field

$$dW = \frac{1}{(2\pi)^2} \frac{1}{8\epsilon_i \epsilon_f \omega_f} \sum_{if} |\langle p_f k_f | iM | p_i \rangle|^2 \, dr dr' \, d^3 \vec{p}_f d^3 \vec{k}_f$$
$$.\delta(p_i + rk - p_f - k_f) \delta(p_i + r'k - p_f - k_f)$$

크 > < 크 >

- The square of the matrix element and spin sums proceed as usual, resulting in a trace over gamma matrices
- Transition rate includes two integrations r, r' over contributions from the external field

$$dW = \frac{1}{(2\pi)^2} \frac{1}{8\epsilon_i \epsilon_f \omega_f} \sum_{if} |\langle p_f k_f | iM | p_i \rangle|^2 \, dr dr' \, d^3 \vec{p}_f d^3 \vec{k}_f$$
$$.\delta(p_i + rk - p_f - k_f) \delta(p_i + r'k - p_f - k_f)$$

▶ The phase integral part and the integrations over r, r' can be performed at the same time

・聞き ・ヨト ・ヨト

- The square of the matrix element and spin sums proceed as usual, resulting in a trace over gamma matrices
- Transition rate includes two integrations r, r' over contributions from the external field

$$dW = \frac{1}{(2\pi)^2} \frac{1}{8\epsilon_i \epsilon_f \omega_f} \sum_{if} |\langle p_f k_f | iM | p_i \rangle|^2 \, dr dr' \, d^3 \vec{p}_f d^3 \vec{k}_f$$
$$.\delta(p_i + rk - p_f - k_f) \delta(p_i + r'k - p_f - k_f)$$

- > The phase integral part and the integrations over r, r' can be performed at the same time
- Use an identity to introduce another delta function

$$\int \frac{1}{2\epsilon_f} d^3 \vec{p_f} \equiv \int \delta(p_f^2 - m^2) d^4 p_f$$

- The square of the matrix element and spin sums proceed as usual, resulting in a trace over gamma matrices
- Transition rate includes two integrations r, r' over contributions from the external field

$$dW = \frac{1}{(2\pi)^2} \frac{1}{8\epsilon_i \epsilon_f \omega_f} \sum_{if} |\langle p_f k_f | iM | p_i \rangle|^2 \, dr dr' \, d^3 \vec{p}_f d^3 \vec{k}_f$$
$$.\delta(p_i + rk - p_f - k_f) \delta(p_i + r'k - p_f - k_f)$$

- ▶ The phase integral part and the integrations over *r*, *r*' can be performed at the same time
- Use an identity to introduce another delta function

$$\int \frac{1}{2\epsilon_f} d^3 \vec{p_f} \equiv \int \delta(p_f^2 - m^2) d^4 p_f$$

• Integrations over p_f then r give $r \rightarrow \frac{(p_i k_f)}{(k p_f)}$

くロト (過) (目) (日)

- The square of the matrix element and spin sums proceed as usual, resulting in a trace over gamma matrices
- Transition rate includes two integrations r, r' over contributions from the external field

$$dW = \frac{1}{(2\pi)^2} \frac{1}{8\epsilon_i \epsilon_f \omega_f} \sum_{if} |\langle p_f k_f | iM | p_i \rangle|^2 \, dr dr' \, d^3 \vec{p}_f d^3 \vec{k}_f$$
$$.\delta(p_i + rk - p_f - k_f) \delta(p_i + r'k - p_f - k_f)$$

- ▶ The phase integral part and the integrations over *r*, *r*' can be performed at the same time
- Use an identity to introduce another delta function

$$\int \frac{1}{2\epsilon_f} d^3 \vec{p_f} \equiv \int \delta(p_f^2 - m^2) d^4 p_f$$

- Integrations over p_f then r give $r \rightarrow \frac{(p_i k_f)}{(k p_f)}$
- We are left with integrations $d\vec{k}_f$ and r'

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

expressions

• We have as the beamstrahlung transition rate $dW \propto Q^{-2/3} \frac{d\vec{k}_f}{\omega_f(kp_f)} [\text{Ai}^2(z) - e^2 a^2 Q^{-2/3}(2 + \frac{u^2}{1+u})$ $\cdot (z\text{Ai}^2(z) + \text{Ai}'^2(z))]e^{-ir'f(k_f^x)}$ $u = \frac{(kk_f)}{(kp_f)} \equiv g(k_f^z) \ ; \ z = h(k_f^y)$ • Solution Cartesian coordinates gives the simplest

<ロ> <四> <ヨ> <ヨ> 三日

• We have as the beamstrahlung transition rate

$$\begin{split} dW &\propto Q^{-2/3} \frac{d\vec{k}_f}{\omega_f(kp_f)} [\mathsf{Ai}^2(z) - e^2 a^2 Q^{-2/3} (2 + \frac{u^2}{1+u}) \\ .(z\mathsf{Ai}^2(z) + \mathsf{Ai}'^2(z))] e^{-ir'f(k_f^x)} \\ u &= \frac{(kk_f)}{(kp_f)} \equiv g(k_f^z) \ ; \ z = h(k_f^y) \end{split}$$

 Solution Cartesian coordinates gives the simplest expressions

- Integration over k^x_f gives a delta function with respect to r'
- Consequently, integration of r' can be performed
- Integration over k^y_f reduces products of Airy functions to a single Airy function using

$$\int \frac{dt}{\sqrt{t}} \mathsf{A} \mathsf{i}^2(t+a) = \frac{1}{2} \int_{2^{2/3}a}^{\infty} \mathsf{A} \mathsf{i}(y) dy$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• We have as the beamstrahlung transition rate

$$\begin{split} dW &\propto Q^{-2/3} \frac{d\vec{k}_f}{\omega_f(kp_f)} [\mathsf{Ai}^2(z) - e^2 a^2 Q^{-2/3} (2 + \frac{u^2}{1+u}) \\ .(z\mathsf{Ai}^2(z) + \mathsf{Ai}'^2(z))] e^{-ir'f(k_f^x)} \\ u &= \frac{(kk_f)}{(kp_f)} \equiv g(k_f^z) \ ; \ z = h(k_f^y) \end{split}$$

 Solution Cartesian coordinates gives the simplest expressions

- Integration over k^x_f gives a delta function with respect to r'
- Consequently, integration of r' can be performed
- Integration over k^y_f reduces products of Airy functions to a single Airy function using

$$\int \frac{dt}{\sqrt{t}}\mathsf{A}\mathsf{i}^2(t+a) = \frac{1}{2}\int_{2^{2/3}a}^\infty\mathsf{A}\mathsf{i}(y)dy$$

Shift dk_z shifted to du

$$W = \frac{\alpha m^2}{\pi \sqrt{3}\epsilon_i} \int_0^\infty \frac{du}{(1+u)^2} \left[\int_x (u)^\infty K_{5/3}(y) dy - \frac{u^2}{1+u} K_{2/3}(x(u)) \right]$$

The Quantum Beamstrahlung expression

I want to compare finally the beamstrahlung Transition Rate obtained using the Nikishov-Ritus and Operator methods

프 > - 프 > · ·

э

The Quantum Beamstrahlung expression

I want to compare finally the beamstrahlung Transition Rate obtained using the Nikishov-Ritus and Operator methods

$$dW \propto \frac{du}{(1+u)^2} \left[\int_x^\infty K_{5/3}(y) dy - \frac{u^2}{1+u} K_{2/3}(x) \right]$$
$$x(NR) = \frac{2}{3ea(kp_i)} \frac{\omega_f}{\epsilon_i - \omega_f}$$
$$x(Op) = \frac{2}{3ea(kp_i)} \frac{(kk_f)}{(kpi) - (kkf)}$$

프 🖌 🛪 프 🕨

э

The Quantum Beamstrahlung expression

I want to compare finally the beamstrahlung Transition Rate obtained using the Nikishov-Ritus and Operator methods

$$dW \propto \frac{du}{(1+u)^2} \left[\int_x^\infty K_{5/3}(y) dy - \frac{u^2}{1+u} K_{2/3}(x) \right]$$
$$x(NR) = \frac{2}{3ea(kp_i)} \frac{\omega_f}{\epsilon_i - \omega_f}$$
$$x(Op) = \frac{2}{3ea(kp_i)} \frac{(kk_f)}{(kpi) - (kkf)}$$

- > The Transition Rates (W) agree since the integration variable is just a variable from 0 to ∞ in any case
- The Differential Transition Rates (dW) however are not the same
- In the limit of ultra-relativistic fermion, the radiation angle is very small

$$\frac{(kk_f)}{(kpi) - (kkf)} \rightarrow \frac{\omega_f}{\epsilon_i - \omega_f}$$
Approximately Harting The method of Nikishov and Bitus et al.

- Work in the Furry picture
- Use Volkov solutions for fermions in an external field
- Write the propagator in terms of Volkov E functions

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Work in the Furry picture
- Use Volkov solutions for fermions in an external field
- Write the propagator in terms of Volkov E functions
- Use usual Feynman rules with a modified vertex

(雪) (ヨ) (ヨ)

- Work in the Furry picture
- Use Volkov solutions for fermions in an external field
- Write the propagator in terms of Volkov E functions
- Use usual Feynman rules with a modified vertex
- Take Fourier Transform to simplify the dependence on space-time variables
- For constant crossed field, no mass shift, dressed momentum
 - no mass shift
 - no dressed momentum
 - no interpretation in terms of external field photons

ヘロン 人間 とくほ とくほ とう

- Work in the Furry picture
- Use Volkov solutions for fermions in an external field
- Write the propagator in terms of Volkov E functions
- Use usual Feynman rules with a modified vertex
- Take Fourier Transform to simplify the dependence on space-time variables
- For constant crossed field, no mass shift, dressed momentum
 - no mass shift
 - no dressed momentum
 - no interpretation in terms of external field photons
- Method applied to Beamstrahlung process
- I want the most effecient simplification to apply to higher orders

ヘロン 人間 とくほ とくほ とう

- Work in the Furry picture
- Use Volkov solutions for fermions in an external field
- Write the propagator in terms of Volkov E functions
- Use usual Feynman rules with a modified vertex
- Take Fourier Transform to simplify the dependence on space-time variables
- For constant crossed field, no mass shift, dressed momentum
 - no mass shift
 - no dressed momentum
 - no interpretation in terms of external field photons
- Method applied to Beamstrahlung process
- I want the most effecient simplification to apply to higher orders
- Expressions simplified to functions of single Airy functions
- Comparison of Transition Rates between Operator and Nikishov-Ritus show agreement for ultra-relativistic fermions

ъ