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Synopsis

Methodology
Use Furry picture to include the external field

Volkov Solution
Dressed momentum and mass shift
Propagator in the external field
Modified Feynman rules

Beamstrahlung example
Tree level with respect to the Furry Picture
Only consider unpolarised fermions
Specific Volkov representation for constant crossed field
Fourier Transform of the Volkov solutions
Phase Integral calculation
The Beamstrahlung Transition Rate
Comparison with Operator method
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Motivation

By the Nikishov and Ritus method I refer to a series of
papers beginning in 1964 in which many of the first order
external field
There were other collaborators and independent
calculations as well!

Am presenting Nikishov and Ritus method because this is
the method I learnt first
It is interesting to compare with the Operator method

Generally, the Nikishov-Ritus method produces
complicated expressions
I want to perform calculations to first order as efficiently as
possible in order to extend to higher orders

I work in natural units ~, c = 1. I usually write scalar
products of 4-vectors (kp)
I often refer to dimensionless quantities like ~ω

mc2
just as ω
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Circularly polarised electromagnetic field

Figure: External field 3
vectors and photon
scattering angles.

Interactions involving intense
lasers are characterised usually
involve a circularly polarized field

Aµ = a1µcos(kx) + a2µsin(kx)

The Lorentz condition implies
(a1k), (a2k) = 0 so

(~a1,~a2,~k) ; |~a1| = |~a2| = a2

These vectors form the coordinate system
e2a2

m2 and ω
m are the external field intensity and energy

For a general 4-vector Qµ

(kQ) = 0 =⇒ (a1Q)2 + (a2Q)2 = a2Q2
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External electromagnetic fields II

Formation length is the distance travelled by a charged
particle while a radiated photon moves one wavelength in
front of it

If the intense particle bunch fields in particle collider
collisions are such that

The formation length is shorter than the bunch length
The formation length is shorter than the field wavelength
The particle is relativistic

Then the field can be considered to be a constant crossed
field Aµ = a1µ(kx)
The Lorentz condition (a1k) = 0
If (kQ) = 0 now (a1Q)2 = a2(Q2 −Q2

y)

For constant crossed field, ω → 0 e2a2

m2 →∞
The physically meaningful quantity is B = |~a1|ω
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Volkov Solution

The Volkov solution is a solution of the second order Dirac
equation containing the external potential

[(p− eA)2 −m2 − e

2
σµνFµν ]Ψ = 0

In the Lorentz gauge kµAµ = 0 we have σµνFµν = 2i/k /A′

Propose a general solution Ψ = exp(−ip.x)Ep(x)u(p)
Substitution of the general solution yields

2i(kp)E′p(x) + [e2A2 − 2e(Ap)− ie/k /A′]Ep(x) = 0

Ep(x) = exp
(

e

2(kp)
/k /A− iS(x)

)
S(x) = −i

∫ k.x

0

[
e(Ap)
(kp)

− e2A2

2(kp)

]
dφ

Expand the exponential term in a series and use /k/k = 0
and the Lorentz condition (Ak) = 0

ΨV
p (x) =

(
1 +

e/k /A

2(kp)

)
exp(iS(x))u(p)
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The Volkov solution for a circularly polarised field

Substitute particular Aµ into the Volkov S function

For a circularly polarised field we naturally get an
interpretation in terms of photons and a mass shift

S(x) = −
[
(px) +

e2a2

2(kp)
(kx) +

e(a1p)
(kp)

sin(kx)− e(a1p)
(kp)

cos(kx)
]

The ’dressed’ 4 momentum qµ ≡ pµ + e2a2

2kµ

The mass shift is q2 ≡ m2 + e2a2

The whole Volkov solution can be expressed in terms of
the dressed momentum, since

(a1q) = (a1p), (kq) = (kp)

A discrete Fourier Transform of exp(iS(x)) gives
contributions nkµ

exp(iS(x)) =
∞∑

n=−∞
F (n, nkµ)
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The Volkov solution for a constant crossed field

For a constant crossed field an interpretation in terms of
external field photons is not required

S(x) = −[(px) +
e(a1p)
2(kp)

(kx)2 − e2a2

6(kp)
(kx)3]

We could introduce the dressed momentum but it doesn’t
emerge ’naturally’
Any mass shift p2 = m2 + e2a2 woud be problematic since
e2a2 →∞
A Fourier transform gives an integration over external field
energy rather than a sum of contributions

exp(iS(x)) =
∫
drF (r) exp(−ir(kx))
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Fermion propagator in the external potential

The Volkov solution can be written as a product of Volkov E
functions and the bispinor

ΨV
p (x) ≡ Ep(x)u(p)

The Volkov E function can be shown to have the properties
of orthogonality and completeness (Ritus Ann Phys 69
555-582 (1970), Bergou and Varro, J Phys A 13, 2823)∫

d4xEpf (x)Epi(x) = δ(pf − pi)∫
d4xEp(x1)Ep(x2) = δ(x1 − x2)

using these properties the fermion propagator in an
external field can be written as the usual fermion
propagator sandwiched between Volkov E functions

G(x2, x1) =
∫
d4pEp(x2)

/p+m

p2 −m2 + iε
Ep(x1)

Anthony Hartin The method of Nikishov and Ritus et al
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Modified Feynman Rules I

Figure: The 1st order
vertex with an external field.

Photon lines are unaffected,
fermion lines represent the
Volkov solutions
Fermion bispinors are
unchanged, so spin sums as
usual
Can treat the Volkov E functions
as adjacent to the vertex
So only a modified vertex is
necessary

Γeµ =
∫
d4xEpf (x)γµEpi(x) exp(−i(kfx))

Substitute the Volkov E functions

(k.x)n exp(iS(x)) ; n = 0, 1, 2

S(x) = −
∫ (kx)

0

[
e(Ap)
(kp)

− e2A2

2(kp)

]
dφ
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Modified Feynman Rules II

To simplify the x dependence take the Fourier Transform

lets assume a constant crossed external field, so it will be
a continuous Fourier Transform

(kx)n exp(iS(x)) =
∫
dr Fn(r) exp(−ir(kx))

Fn(r) =
∫ ∞
−∞

dt tn exp(irt+ iS(t))

Lets call the functions F, auxillary functions
Our modified vertex in momentum space is then

Γµ = (2π)4
∫
drEp(r)γµEpi(r)δ

4(pf + kf − pi − rk)
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Explicit modified vertex

When squaring a matrix function, we need to simplify
products of F functions
The F function are explicitly

Fn(r) =
∫∞
−∞ dt exp(irt+ i(aP )t2 + i13Qt

3)

Pµ = e
2

(
pµf

(kpf )
−

pµi
(kpi)

)
; Q = e2a2

2
(kkf)

(kpi)(kpf )

After suitable change of variables we eliminate the t2 term
and the coefficient Q in the t3 and the result is

F0(r) = Q−
1
3 Ai(z) exp(−irQ−1(aP ))e−ir

(aP )
Q

F1(r) = Q−
2
3 [Q−

2
3 (aP )Ai(z)− i Ai’(z)]e−ir

(aP )
Q

F2(r) = Q−
4
3 [(2Q−1(aP )2 − r)Ai(z) + i 2Q−

1
3 (aP )Ai’(z)]e−ir

(aP )
Q

where z = Q−
1
3 (r −Q−1(aP ))

Finally the modified vertex in a constant crossed field is

Γeµ =

(2π)4
∫
dr
[
γµF0(r) + e

2

(
/a/kγµ
(kpf ) −

γµ/a/k
(kpi)

)
F1(r) + e2a2/kγµ/k

4(kpi)(kpf )F2(r)
]
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Beamstrahlung Transition Rate I

The square of the matrix element and spin sums proceed
as usual, resulting in a trace over gamma matrices
Transition rate includes two integrations r, r′ over
contributions from the external field

dW =
1

(2π)2
1

8εiεfωf

∑
if

|〈pfkf |iM |pi〉|2 drdr′ d3~pfd
3~kf

.δ(pi + rk − pf − kf )δ(pi + r′k − pf − kf )

The phase integral part and the integrations over r, r′ can
be performed at the same time
Use an identity to introduce another delta function∫

1
2εf

d3 ~pf ≡
∫
δ(p2

f −m2) d4pf

Integrations over pf then r give r → (pikf )
(kpf )

We are left with integrations d~kf and r’
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Beamstrahlung Transition Rate II

We have as the beamstrahlung transition rate

dW ∝ Q−2/3 d~kf
ωf (kpf )

[Ai2(z)− e2a2Q−2/3(2 +
u2

1 + u
)

.(zAi2(z) + Ai’2(z))]e−ir
′f(kxf )

u = (kkf )
(kpf ) ≡ g(kzf ) ; z = h(kyf )

Solution Cartesian coordinates gives the simplest
expressions

Integration over kxf gives a delta function with respect to r’
Consequently, integration of r’ can be performed
Integration over kyf reduces products of Airy functions to a
single Airy function using∫

dt√
t
Ai2(t+ a) =

1
2

∫ ∞
22/3a

Ai(y)dy

Shift dkz shifted to du

W =
αm2

π
√

3εi

∫ ∞
0

du

(1 + u)2

[∫
x
(u)∞K5/3(y)dy − u2

1 + u
K2/3(x(u))

]
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The Quantum Beamstrahlung expression
I want to compare finally the beamstrahlung Transition Rate
obtained using the Nikishov-Ritus and Operator methods

dW ∝ du

(1 + u)2

[∫∞
x K5/3(y)dy − u2

1 + u
K2/3(x)

]
x(NR) =

2
3ea(kpi)

ωf
εi − ωf

x(Op) =
2

3ea(kpi)
(kkf )

(kpi)− (kkf)

The Transition Rates (W) agree since the integration
variable is just a variable from 0 to∞ in any case
The Differential Transition Rates (dW) however are not the
same
In the limit of ultra-relativistic fermion, the radiation angle is
very small

(kkf )
(kpi)− (kkf)

→
ωf

εi − ωf
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Summary

Work in the Furry picture
Use Volkov solutions for fermions in an external field
Write the propagator in terms of Volkov E functions

Use usual Feynman rules with a modified vertex
Take Fourier Transform to simplify the dependence on
space-time variables
For constant crossed field, no mass shift, dressed
momentum

no mass shift
no dressed momentum
no interpretation in terms of external field photons

Method applied to Beamstrahlung process
I want the most effecient simplification to apply to higher
orders
Expressions simplified to functions of single Airy functions
Comparison of Transition Rates between Operator and
Nikishov-Ritus show agreement for ultra-relativistic
fermions
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