Lateral Profiles of

Hadron-Induced Showers in the AHCAL

Angela Lucaci & Riccardo Fabbri

CALICE Analysis Meeting, DESY, 23 March 2009

Outline Data Selection Monte Carlo Tuning Results: Shower Energy Results: Lateral Energy Profiles Results: Fractional Energy Deposition Results: Shower Radius Summary and Outlook **Data Selection**

- $\blacksquare \pi^-$ beam data from CERN 2007 data taking period
- Runs 330327 (18 GeV): combined ECAL/HCAL/TCMT data taking
- Events selected with triggers
 - BEAM (SPILL + Scintillator coincidence) & SPILL data (real data only):
 - SKIP calibration/pedestal data
- **HCAL energy cut:** E > 0.5 MIP
- **Discard events with Nr. of firing ECAL cells SiPM** > 50
 - \implies get rid of showers starting already in ECAL
- ullet Discard events with Nr. of firing SiPM < 150 in HCAL
 - \implies select shower events
- NOTE: no energy deposited in TCMT used sofar
 - \implies This analysis focuses on showers only in AHCAL
- Latest calibration used in data (temperature correction included)
- Latest calibration/digitisation used in Monte Carlo
- Same cuts used in both data and Monte Carlo R.Fabbri & A.Lucaci

Data Selection: MIP in ECAL

Skip event if Nr. of hits in $\mbox{ECAL}>50$

 \Rightarrow meant to clean sample from

showers already starting in

ECAL

Data Selection: Showers in HCAL

Select event if Nr. of hits in HCAL > 150

 \Rightarrow meant to select shower events only

 \Rightarrow cut applied after cut on ECAL hits

R.Fabbri & A.Lucaci

Data Selection: μ **-contamination**

 μ -contamination removed after applying shower cut in HCAL

NOTE: on top of this, additional conservative cut applied: Discard event if

- a) 0 < Nr. of hits in TCMT layer ≤ 3
- b) at least 15 (out of 16) TCMT layers fullfill a)

R.Fabbri & A.Lucaci

Monte Carlo Tuning

- Beam width given by data: profiles in chamber DC3
- Beam mean given by data: showers COGs in HCAL
- Beam gun located in front of DC3

Hadron Showers: Lateral Profiles - p. 6

Monte Carlo Tuning

- No disalignment in MC
- Simulation done with larger chambers: 300X300 mm²
 - ⇒ otherwise beam partially cut due to linearity cut in chambers $\frac{1}{5}$
- Running conditions reproduced

Hadron Shower Energy

Shower Deposited Energy

Lateral Energy Profiles

Analysis Strategy

Shower reconstructed wrt reconstructed incident track axis

For each shower event, energy in *i*-tile localised (after alignment) according to

$$\rho_i = \sqrt{(x_i - x_{track})^2 + (y_i - y_{track})^2}$$

 $x_i/y_i \longrightarrow$ tile-center coordinates $x_{track}/y_{track} \longrightarrow$ track impact point coordinates Analysis Strategy

Shower reconstructed wrt reconstructed incident track axis

For each shower event, energy in *i*-tile localised (after alignment) according to

$$\rho_i = \sqrt{(x_i - x_{track})^2 + (y_i - y_{track})^2}$$

 $x_i/y_i \longrightarrow$ tile-center coordinates $x_{track}/y_{track} \longrightarrow$ track impact point coordinates

Tile coordinate is fixed while secondary shower track may be everywhere in tile
Circumvent this geometrical bias assuming uniform distrib. probability for hit in tile

$$x_i \longrightarrow x_i + \Delta x$$

 $\Delta x = \text{Uniform}_{\text{Random}_{\text{Generator}}}(x_i - \text{cellSize}/2., x_i + \text{cellSize}/2.)$

...and similarly for y_i

Analysis Strategy

Effects of randomisation procedure for hit-coordinates (Monte Carlo simulation)

As expected, procedure induces smoothness of measured profiles

NOTE: Random procedure applied in the analysis energy-related results (data and Monte Carlo) presented in this work

R.Fabbri & A.Lucaci

R.Fabbri & A.Lucaci

Lateral Energy Density: Effects from different deposited shower energy in models

Investigate shower energy deposition

in whole HCAL

Lateral Energy Density: Effects from different deposited shower energy in models

Investigate shower energy deposition

Normalise MC bin by bin to data

energy content

Lateral Fractional Energy Deposition in Hadron Showers

Fractional Energy Deposition

 Calculated in every bin ρ_i via energy integration from lowest bin up to ρ_i bin
 Then, normalise to total energy reconstructed in calo sector

Similar conclusions as for energy density might be drawn

Showers Core:

MC models can be compared with data for longitudinal sections of showers where different interactions type might dominate

Fractional Energy Deposition

 Calculated in every bin ρ_i via energy integration from lowest bin up to ρ_i bin
 Then, normalise to total energy reconstructed in calo sector

Similar conclusions as for energy density might be drawn

NOTE: statistical uncertainties

are correlated

MC models can be compared with data for longitudinal sections of showers where different interactions type might dominate

R.Fabbri & A.Lucaci

Hadron Shower Radius

Shower radius distribution

Available MC show large variations of quantitites describing hadron showers, and for different hadronic calorimeter scenario

Effects appear to be sizable: Investigation with real data needed (Adapted from G. Mavromanolakis and D. Ward arXiv:physics/0409040; $10~{\rm GeV}~\pi$)

Shower radius distribution

Effects of analysis cuts on reconstructed shower radius distribution investigated to possibly compare with other simulations

- Stronger effects from selecting shower events: uniform noise hits contribution
- to ditribution becomes negligible in events with > 150 firing cells

Shower radius distribution

LHEP/QGSP BERT \Rightarrow no/with neutrons

- WO detector effects also QGSP BERT is sizably off
 - \Rightarrow Including Birks Law and time

cut, it describes better the data

Shower radius distribution

LHEP/QGSP BERT \Rightarrow no/with neutrons

- WO detector effects also QGSP BERT is sizably off
 - \Rightarrow Including Birks Law and time

cut, it describes better the data

Summary and Outlook

- Lateral hadron shower investigated with high granularity CALICE AHCAL
- Analysis procedure presented: data selection/analysis algorithm
- Monte Carlo tuning to real data presented
- Results proposed:
 - Shower Energy

Lateral Energy Profiles

Fractional energy

Shower radius

- Analysis focused in comparing MC models (LHEP & QGSP BERT) to data
 - Simulation improved after inclusion of detector effects
 - Within current calib/digit, QGSP BERT (LHEP) better matches profile tail (core)
- As further steps (next note):
 - Evaluate systematical uncertainties
 - Extract different contributions in shower development
 - Analysis different test-beam energy (particle type) data
 - Analysis with respect to start of shower

MC Cross-Check: Lateral Profiles

Riccardo (10K events)

Angela (all statistics)

LHEP

R.Fabbri & A.Lucaci

Hadron Showers: Lateral Profiles - p. 25

MC Cross-Check: Lateral Profiles

Riccardo (10K events)

Angela (all statistics)

QGSP BERT

R.Fabbri & A.Lucaci

Hadron Showers: Lateral Profiles - p. 26

MC Cross-Check: Fractional Energy

Riccardo (10K events)

Angela (all statistics)

Hadron Showers: Lateral Profiles

– p. 27

LHEP

MC Cross-Check: Fractional Energy

Riccardo (10K events)

R.Fabbri & A.Lucaci

Angela (all statistics)

– p. 28

Hadron Showers: Lateral Profiles

QGSP