# CLIC Main Linac Beam Dynamics

D. Schulte

## Main Beam Emittance Budgets and Luminosity

- For the vertical emittance a budget has been established
  - $\epsilon_y \leq 5 \, \mathrm{nm}$  after damping ring extraction
  - $\Delta\epsilon_y \leq 5\,\mathrm{nm}$  during transport to main linac
  - $\Delta \epsilon_y \leq 10 \, \mathrm{nm}$  in main linac
- For the horizontal emittance the old design gave
  - $\epsilon_x = 500 \, \mathrm{nm}$  after damping ring extraction
  - $\epsilon_x = 600 \, \mathrm{nm}$  before main linac
  - $\epsilon_x = 660\,\mathrm{nm}$  before the beam delivery system with the growth mainly in the RTML
- The emittance budget
  - includes design, static and dynamic effects
  - requires 90% of the machines to perform better than the target
- For the main linac one requires
  - for static imperfections  $\Delta \epsilon_y \leq 5 \, \mathrm{nm}$  for 90% of the machines
  - for dynamic imperfections  $\Delta \epsilon_y \leq 5 \ \mathrm{nm}$  on average
    - short and long-term effects

# Module Layout



- Five types of main linac modules
- Drive beam module is regular

## Lattice Design Considerations

- Linac lattice is a trade-off
- strong focusing
  - small sensitivity to wakefields
  - dispersive effects important
- large correlated energy spread
  - beam is more stable
  - dispersive effects are increased
- First need to consider beam stability
  - $\Rightarrow$  look at allowed energy spread

- weak focusing
  - high sensitivity to wakefields
  - dispersive effects smaller
- small correlated energy spread
  - beam is less stable
  - dispersive effects are reduced

## Lattice Design

- Used  $\beta \propto \sqrt{E}$ ,  $\Delta \Phi = \mathrm{const}$ 
  - balances wakes and dispersion
  - roughly constant fill factor
  - phase advance is chosen to balance between wakefield and ground motion effects
- Preliminary lattice
  - made for  $N = 3.7 \times 10^9$
  - quadrupole dimensions
     need to be confirmed
  - some optimisations remain to be done
- Total length about 21km
  - fill factor more than 78%



- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth

### **Energy Spread and Beam Stability**

- Trade-off in fixed lattice
  - large energy spread is more stable
  - small energy spread is better for alignment
- $\Rightarrow$  Beam with  $N=3.7\times 10^9$  can be stable



• Some reserve for single bunch wakefields



### Indicative Static Main Linac Tolerances

| Element    | error      | with respect to | tolerance           |                    |
|------------|------------|-----------------|---------------------|--------------------|
|            |            |                 | CLIC                | NLC                |
| Structure  | offset     | beam            | $5.8\mu\mathrm{m}$  | $5.0\mu\mathrm{m}$ |
| Structure  | tilt       | beam            | $220\mu$ radian     | $135\mu$ radian    |
| Quadrupole | offset     | straight line   |                     |                    |
| Quadrupole | roll       | axis            | $240\mu\mathrm{m}$  | $280\mu$ radian    |
| BPM        | offset     | straight line   | $0.44\mu\mathrm{m}$ | $1.3\mu\mathrm{m}$ |
| BPM        | resolution | BPM center      | $0.44\mu\mathrm{m}$ | $1.3\mu\mathrm{m}$ |

- All tolerances for 1nm growth after simple one-to-one steering
  - note: assume quadrupoles are moved for correction
- CLIC emittance budget is two times smaller than for NLC
- Tighter tolerances for BPM due to stronger focusing in CLIC
  - but therefore more relaxed tolerances for structures

# Assumed Pre-Alignment Performance

#### PRE-ALIGNMENT

| Ref.                | 1        | Inherent accuracy of reference                             | 10 μm | 1σ         |
|---------------------|----------|------------------------------------------------------------|-------|------------|
| Ref. to cradle      | 2        | Sensor accuracy and electronics (reading error, noise,)    | 5 μm  | <u>1</u> σ |
|                     | 3        | Link sensor/cradle (supporting plates, interchangeability) | 5 μm  | 1σ         |
| Cradle to<br>girder | 4        | Link cradle/girder                                         | 5 μm  | 1σ         |
| Girder to<br>AS     | 5a<br>5b | Link girder/acc. structure Inherent precision of structure | 5 μm  | 1σ         |
|                     |          | TOTAL                                                      | 14 μm | 1σ         |
|                     |          | Tolerance                                                  | 40 μm | 3σ         |

#### **BEAM-BASED ALIGNMENT**

6) relative position of structure and BPM reading

10

5 µm

H. Mainaud Durand

#### PRE-ALIGNMENT

| Ref.   | 1  | Inherent accuracy of reference                             | 10 μm | 1σ |
|--------|----|------------------------------------------------------------|-------|----|
| Ref.   | 2  | Sensor accuracy and electronics (reading error, noise,)    | 5 μm  | 1σ |
| cradle | 3  | Link sensor/cradle (supporting plates, interchangeability) | 5 μm  | 1σ |
| Cradle | 7a | Link cradle/quadrupole                                     | 5 μm  | 1σ |
|        | 7b | Inherent precision of quadrupole                           | 10 μm | 1σ |
|        |    | TOTAL                                                      | 17 μm | 1σ |
|        |    | Tolerance                                                  | 50 μm | 3σ |

#### PRE-ALIGNMENT

| Ref.              | 1                                                | Inherent accuracy of reference                                  | 10 μm | 1σ |
|-------------------|--------------------------------------------------|-----------------------------------------------------------------|-------|----|
| Ref. to<br>cradle | 2                                                | Sensor accuracy and electronics (reading error, noise,)         | 5 μm  | 1σ |
|                   | 3                                                | Link sensor/cradle (supporting plates, interchangeability) 5 μr |       | 1σ |
| Cradle<br>to BPM  | 8a                                               | Link cradle/quadrupole BPM axis                                 | 5 μm  | 1σ |
| ВРМ               | BPM 8b Inherent precision of quadrupole BPM axis |                                                                 | 5 μm  | 1σ |
|                   |                                                  | TOTAL                                                           | 14 μm | 1σ |
|                   |                                                  | Tolerance                                                       | 40 μm | 3σ |

#### BEAM-BASED ALIGNMENT:

8c) relative position of quadrupole and BPM reading

10 μm

1σ

# Misalignment Model: Simplified Version

- In PLACET consider three types of misalignment
  - articulation point (cradle)
  - articulation point to girder
  - structure centre to girder
- Error of reference line may contain systematics



### Assumed Survey Performance

| Element        | error      | with respect to        | alignment              |                               |
|----------------|------------|------------------------|------------------------|-------------------------------|
|                |            |                        | NLC                    | CLIC                          |
| Structure      | offset     | girder                 | $25\mu\mathrm{m}$      | $5\mu\mathrm{m}$              |
| Structure      | tilts      | girder                 | $33\mu$ radian         | $200(*)\mu{\rm m}$            |
| Girder         | offset     | survey line            | $50\mu\mathrm{m}$      | $9.4\mu\mathrm{m}$            |
| Girder         | tilt       | survey line            | $15\mu\mathrm{radian}$ | $9.4\mu\mathrm{radian}$       |
| Quadrupole     | offset     | survey line            | $50\mu\mathrm{m}$      | $17\mu\mathrm{m}$             |
| Quadrupole     | roll       | survey line            | $300\mu$ radian        | $\leq 100  \mu \text{radian}$ |
| BPM            | offset     | quadrupole/survey line | $100\mu\mathrm{m}$     | $14\mu\mathrm{m}$             |
| BPM            | resolution | BPM center             | $0.3\mu\mathrm{m}$     | $0.1(0.05)\mu{\rm m}$         |
| Wakefield mon. | offset     | wake center            | $5\mu\mathrm{m}$       | $5\mu\mathrm{m}$              |

- In NLC quadrupoles contained the BPMs, they are seperate for us
- $\Rightarrow$  Better alignment and BPM resolution foreseen in CLIC (0.1  $\mu m$  for alignment)
- ⇒ Similar wakefield monitor performance
  - Structure tilt is dominated by shift of quadrants effective tilt is given by shift as  $\theta \approx \Delta z/(2a)$  in our case  $\Delta z = 1 \, \mu \mathrm{m}$  corresponds to  $\theta \approx 180 \, \mu \mathrm{radian}$

## Beam-Based Alignment and Tuning Strategy

- Make beam pass linac
  - one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
  - dispersion free steering
  - ballistic alignment
  - kick minimisation
- Remove wakefield effects
  - accelerating structure alignment
  - emittance tuning bumps
- Tune luminosity
  - tuning knobs

## Dispersion Free Correction

- Basic idea: use different beam energies
- NLC: switch on/off different accelerating structures
- CLIC (ILC): accelerate beams with different gradient and initial energy
  - energies done by manipulation of bunch compressor
    - demonstrated by A. Latina and P. Eliasson



• Optimise trajectories for different energies together:

$$S = \sum_{i=1}^{n} \left( w_i(x_{i,1})^2 + \sum_{j=2}^{m} w_{i,j}(x_{i,1} - x_{i,j})^2 \right) + \sum_{k=1}^{l} w'_k(c_k)^2$$

- Last term is omitted
- Idea is to mimic energy differences that exist in the bunch with different beams
- For stability want to use two parts of one pulse



## Impact of Structure Alignment

- Slightly older parameters for illustration
- $\Rightarrow$  Average emittance growth is still quite large
  - $\bullet$  Aligning the accelerating structures with RMS accuracy of  $5\,\mu\mathrm{m}$  to the beam drastically improves the performance
- $\Rightarrow$  Need to move girders



### Beam-Based Structure Alignment

- ullet Each structure is equipped with a wakefield monitor (RMS position error  $5\,\mu\mathrm{m}$ )
- Up to eight structures on one movable girders
- $\Rightarrow$  Align structures to the beam
  - Assume identical wake fields
    - the mean structure to wakefield monitor offset is most important
    - in upper figure monitors are perfect, mean offset structure to beam is zero after alignment
    - scatter around mean does not matter a lot
  - With scattered monitors
    - final mean offset is  $\sigma_{wm}/\sqrt{n}$
  - In the current simulation each structure is moved independently
  - A study has been performed to move the articulation points
    - ⇒ negligible additional effect if additional articulation point exists at quadrupoles





- For our tolerance  $\sigma_{wm} = 5 \, \mu \mathrm{m}$  we find  $\Delta \epsilon_y \approx 0.5 \, \mathrm{nm}$ 
  - some dependence on alignment method

### Final Emittance Growth

- Different implementations of DFS have different sensitivities to imperfections
  - values for examples (M1– M4) in nm
  - based on PLACET simulations
  - simplified model for varying bunch compressor
- Case M2 shown in figure

|                 | M1   | M2   | М3   | M4   |
|-----------------|------|------|------|------|
| beam jitter     | 0.57 | 0.67 | 0.51 | 0.57 |
| BPM resolution  | 0.19 | 0.17 | 0.17 | 0.16 |
| struct. tilt    | 2.64 | 0.43 | 0.4  | 0.48 |
| struct. real.   | 0.14 | 0.53 | 0.53 | 0.44 |
| struct. scatter | 0.18 | 0.06 | 0.05 | 0.04 |
| sum             | 3.8  | 1.6  | 1.8  | 1.8  |



## **Emittance Tuning Bumps**

- Emittance (or luminosity) tuning bumps can further improve performance
  - gobally correct wakefield by moving some structures
  - similar procedure for dispersion
- Need to monitor beam size
- Optimisation procedure
  - measure beam size for different bump seetings
  - make a fit to determine optimum setting
  - apply optimum
  - iterate on next bump



### Luminosity Simulator

- Conventionally use laser wire that is smaller than the beam size
  - scan beam
  - fit relevant size
- Proposed use of luminosity simulator
  - laser wire can have roughly Gaussian transverse profile
  - collide beam with laser beam that has transverse dimension corresponding roughly to the target beam size
  - optimise beam-photon luminosity
- P. Eliasson has demonstrated this with simulations
  - using two wires at  $90^{\circ}$  phase advance
  - 3% RMS luminosity error per measurement
  - incorrect laser spot size does not compromise performance strongly
  - need to steer beam with BPM
  - need to optimise beam position in the BPM once in a while
- Further studies to optimise the design

### Structure-To-Girder Tolerance

- The mean offset of the structures to the beam is corrected
  - this corrects almost all effects due to identical wakefields
  - ⇒ a limit will come from non-identical wakefields
    - some impact on the alignment procedure can exist
- Single bunch wakefield limit
  - assume relative slope of wakefields scatters by  $\sigma_w$
  - $\Rightarrow$  alignment tolerance is  $\sigma_{cav,girder} = \sigma_{wm}/\sigma_w = 5\,\mu\mathrm{m}/\sigma_w$
- Multi-bunch wakefield limits
  - additional kicks for identical wakes aligned with single bunch wakes
    - $\Rightarrow$  found to give little effect
  - non-identical wakefields or identical wakefields not aligned with single bunch wakes
    - $\Rightarrow$  can give an effect