
MarlinTPC Tutorial
Introduction to ILCSoft

Martin Killenberg

University of Bonn

12. February 2009

Martin Killenberg (University of Bonn) MarlinTPC Installation 1

Overview

LCIO Data Persistency Framework

GEAR Geometry Package

LCCD Conditions Data Toolkit

(R)AIDA Histogramming Package

Marlin Analysis Framework

Martin Killenberg (University of Bonn) MarlinTPC Installation 2

LCIO

Linear Collider Input/Output

Event Data Model

Provides Data Classes

Implementations for JAVA and C++

Data Class Description

LCEvent Contains collections of one event (bunch crossing)

LCCollection
Collection of data classes of a certain type
e. g. TrackerRawData

MCParticle Particle from the MC generator
SimTrackerHit Charge deposition in the detector

TrackerRawData ADC values from the TPC
TrackerData Calibrated raw data
TrackerPulse Charge and time of a pulse in one electronics channel
TrackerHit 3D hit with charge information
Track Helix parametrisation if the fitted track

LCGenericObject User defined data class

Martin Killenberg (University of Bonn) MarlinTPC Installation 3

Interfaces and Implementations

For every object there is an abstract, common interface for Java and
C++, and an implementation class with the suffix “Impl” (e. g.
TrackerHit and TrackerHitImpl).

The interface classes live in the namespace “EVENT”, the
implementations in “IMPL”. The namespace “lcio” includes all
namespaces used in lcio.

When retrieving data from a collection or a file you always get a pointer to
the abstract class. With this you can access the data (get() functions),
but you cannot modify them.

When creating and modifying the data objects you have to use the
implementations. Here you also have access to the set() functions.

Martin Killenberg (University of Bonn) MarlinTPC Installation 4

LCCollection and LCEvent

LCCollection

Object that can store all data classes derived from LCObject

std::string & getTypeName() Returns the type of the objects stored.
int getNumberOfElements() Number of objects in the collection.

LCObject * getElementAt(int index) Get an element from the collection.

LCEvent

Stores LCCollections with an individual name, so you can have several
collections of the same data type
(e. g. “VertexDetectorHits” and “TPCHits” both being of type TrackerHit).

int getEventNumber() Get the event number.
LCCollection * getCollection (const string &name) Get a collection

with given name.

I only show the most important data members to give an idea of the
functionality. Refer to the Doxygen documentation for a complete list.

Martin Killenberg (University of Bonn) MarlinTPC Installation 5

Data Classes 1

TrackerRawData

Raw Data (ADC values) per electronics channel. In zero suppressed mode there
can be more than one object per channel.

int getCellID0 () Get the geometric cell ID 0 (PadIndex)

int getCellID1 () Get the geometric cell ID 1 (ModuleID)

int getTime() Get the time (time bin of the first ADC sample)

ShortVec & getADCValues () Vector with 16 bit ADC values
(samples in one channel or pulse)

TrackerData

Similar to TrackerRawData, but uses floats instead of ints for the data values.
Used for calibrated data e. g. after pedestal subtraction.

int getCellID0() Get the geometric cell ID 0 0(ChannelID)

int getCellID1() Get the geometric cell ID 1 0(ModuleID)

float getTime() Get the time (time bin of the first ADC sample)

FloatVec & getChargeValues () Vector with calibrated ADC values
(in MarlinTPC still in ADC counts)

Martin Killenberg (University of Bonn) MarlinTPC Installation 6

Data Classes 2

TrackerPulse

Charge and time on a pad.

int getCellID0() Get the geometric cell ID 0 0(PadIndex)

int getCellID1() Get the geometric cell ID 1 0(ModuleID)

float getTime() Get the time (time in ns)

float getCharge() Get the charge (still in primary electrons)

TrackerData * getTrackerData() Back link to the TrackerData
this pulse has been calculated from.

TrackerHit

3D hit with space coordinates and charge.

double * getPosition() The hit position (in mm)

float getdEdx() Returns the charge of the hit (in GeV)

Note: This is not dE/dx!
Name is due to historical reasons.

LCObjectVec & getRawHits() Back link to the pulses.

Martin Killenberg (University of Bonn) MarlinTPC Installation 7

Data Classes 4

Track

Helix parametrisation of a track (see LC note LC-DET-2006-004.pdf)

float getD0() Impact paramter of the track in (r-phi).
float getPhi() Phi of the track at the reference point.
float getOmega() Signed curvature of the track in [1/mm].
float getZ0() Impact paramter of the track in (r-z).
float getTanLambda() Lambda is the dip angle in s-z.
float getdEdx() dEdx of the track.

TrackerHitVec & getTrackerHits () The hits on this track.

Martin Killenberg (University of Bonn) MarlinTPC Installation 8

http://www-flc.desy.de/lcnotes/notes/LC-DET-2006-004.pdf

Data Classes 5

LCGenericObject

Data class with arbitrary number of integer, float and double values. Used for
user-defined classes, mainly conditions data.

int getNInt() Number of integer values stored in this object.
int getNFloat() Number of float values stored in this object.
int getNDouble() Number of double values stored in this object.

int getIntVal(int index) Returns the integer value for the given index.
float getFloatVal(int index) Returns the float value for the given index.

double getDoubleVal(int index) Returns the double value for the given index.

string getTypeName() The type name of the user class
(typically the class name).

string getDataDescription() Description what the data is
(Voltages, Pressure etc.).

LCFixedObject

Derived from LCGenericObject, but with fixed number of ints, floats and
doubles. This improves the performance.

Martin Killenberg (University of Bonn) MarlinTPC Installation 9

Memory Management in LCIO

Objects are always created on the heap, i. e. dynamically using “new”.

Objects are only accessed by pointers, only pointers to objects are stored.

Never use copy constructors or assignment operators!

LCEvents and LCCollections own the objects they point to. You don’t
have to (and must not) delete objects you added to an event or collection.

get() functions do not hand over the ownership. Do not delete the objects
you got from a container class.

Martin Killenberg (University of Bonn) MarlinTPC Installation 10

Example: Reading data

There is an “LCEvent *event” object in memory which has been read from a
file. You want to get number of hits in the event and the dEdx of the first track

// get the collection with hits
LCCollection *hitCollection = event->getCollection("TPCHits");
int nHits = hitCollection->getNumberOfElements();

cout << "Event "<< event->getEventNumber()
<< " has " nHits "<< hits." << endl;

// get the collection with tracks
LCCollection *trackCollection = event->getCollection("TPCTracks");

// get the first track
if (trackCollection->getNumberOfElements() > 0)
{

// we have to dynamic_cast beause the collection returns a pointer
// of the LCObject base class
Track * t = dynamic_cast<Track *> trackCollection->getElementAt(0);

// If the cast succeeded the pointer is not 0
if (t != 0)

cout << "Track curvature is " << t->getdEdx() << endl;

}

Martin Killenberg (University of Bonn) MarlinTPC Installation 11

GEAR

GEometry API for Reconstruction

Geometry description toolkit for the whole detector. For the TPC there is an
abstract interface class for row based pad layouts: PadRowLayout2D (see gear
Doxygen documentation for details)

There are three implementations in v00-11-01:

RectangularPadRowLayout: Flexible rectangular layout, all pads in a row
having the same size, but changing of the size and staggering from row to
row is possible.

FixedPadSizeDiskLayout: All pads in all rows have the same size. Pad
plane is made of complete circles. Used for LDC studies.

FixedPadAngleDiskLayout: Wedge shaped module with pads all having
the same angle (like the LP micromegas module).
Version in v00-11-01 is still buggy! Use the CVS head if you want to use it.

The exact geometry (size and number of the pads etc.) is defined in an XML
steering file.

All software in MarlinTPC is programmed against the abstract API
and should run with all geometries!

Martin Killenberg (University of Bonn) MarlinTPC Installation 12

Example XML file

Small TPC prototype with a rectangular pad plane.

<gear>
<detectors>

<detector name="TPCProtoTest" geartype="TPCParameters">

<maxDriftLength value="260." />
<!-- Set vDrift to 0. Take it from conditions data! -->
<driftVelocity value="0." />
<readoutFrequency value="10000000" />

<!-- simple uniform row layout -->
<!-- This is an example for a prototype TPC:

64 pads in a row, 24 rows.
The copper is 0.8x3.8 with 0.2 mm gap.
64 pads on 64 mm => pad pitch = 1 mm

<PadRowLayout2D type="RectangularPadRowLayout"
xMin="-32." xMax="32." yMin="-48.">

<row repeat="24" nPad="64" padHeight="3.8" padWidth="0.8" rowHeight="4." />
</PadRowLayout2D>

</detector>

</detectors>
</gear>

Martin Killenberg (University of Bonn) MarlinTPC Installation 13

LCCD

Linear Collider Conditions Data toolkit.
Allows to to access slow control data either from a data base or from an lcio
file. The use is transparent for the user code, i. e. you don’t have to care where
the data comes from. Just ask LCCD for it and it ensures the data is available.

The data has to be provided as lcio::LCGenericData objects. MarlinTPC brings
already brings a lot of classes in the tpcconddata directory (see next slide).

In this tutorial we will only use data from lcio files.

Martin Killenberg (University of Bonn) MarlinTPC Installation 14

tpcconddata

Martin Killenberg (University of Bonn) MarlinTPC Installation 15

AIDA

Abstract Interfaces for Data Analysis
Programming language independent histogramming package.

There are two implementations which can be used with Marlin:

RAIDA
ROOT based C++ implementation, comes with ILCSoft

JAIDA / AIDAJNI
Java implementation, more mature than RAIDA

Martin Killenberg (University of Bonn) MarlinTPC Installation 16

Marlin

Modular Analysis and Reconstruction for the LINear collider

Marlin is a C++ reconstruction framework for LCIO
data.

Controls the data flow

Each computing task is performed by a
“processor”

Interface between the processors: LCEvent

Programme flow is controlled with XML steering
files

Provides an interface to GEAR and LCCD

LCEvent

Marlin Processor

LCEvent

GEAR

LCCD

Martin Killenberg (University of Bonn) MarlinTPC Installation 17

Marlin Processors

Processor parameter control the work flow of the individual processors

Processor parameters are set in the steering file.

Each parameter has a default value, it is not mandatory to set it.

There are “optional parameter”, for instance for cuts.
If the parameter is set, the cut is executed with the given value.
If the parameter is not set the cut is not executed at all, no default value is
applied.

Required parameters in every processor:

Name of the input collection(s)

Name of the output collection(s)

“Marlin -x” lists all parameters that are available for the processor. They
should also be documented in the Doxygen docu.

Martin Killenberg (University of Bonn) MarlinTPC Installation 18

Marlin Build-in Processors

AIDAProcessor:
Opens the output file for the histograms.

ConditionsProcessor:
Reads in the required collections from LCCD.

LCIOOutputProcessor:
Opens the outfile. Here you can define which collections are stored in the
outfile.

Martin Killenberg (University of Bonn) MarlinTPC Installation 19

Marlin Steering File

In the steering file instances of the processors are defined. You can call the
same processor several times with different parameters.

Global section:
Input file
GEAR file
Verbosity level

Execute section:
List of processor instances to be executed in this order.

Martin Killenberg (University of Bonn) MarlinTPC Installation 20

MarlinTPC Overview

More than 50 processors in different sections:

Simulation

Digitisation

Reconstruction

Calibration

Analysis

Validation

Tools

Examples

LCIO data classes for conditions data

Note: MarlinTPC is not related to and does not need MarlinReco.
MarlinReco is full detector reconstrution used for simulation studies and uses old LEP
tracking code for the TPC.

MarlinTPC brings its own, highly modular standalone TPC reconstruction.

Martin Killenberg (University of Bonn) MarlinTPC Installation 21

MarlinTPC Simulation and Digitisation

Smearing

Geant4 Hit

Charge in Voxels

Electronics

TPCRawData

Amplification

Drift and Diffusion

Drifted Cloud

Amplified Cloud

Geant4 Hit

Electron Cloud

Ionisation

Amplified Electrons

Amplification

Drifted Electrons

Drift and Diffusion

Generator Particle

Primary Electrons

Ionisation

Drift and Diffusion incl. B−Field Distortions

B−Field

Backdrifting Ions

Electrical Field

Drift and Diffusion incl. E−Field Distortions

E−Field Calculator

Primary Ions

Electron Cloud Simulation Primary Electron SimulationSimple Digitisation

Martin Killenberg (University of Bonn) MarlinTPC Installation 22

MarlinTPC Reconstruction

Hits
Track Candidates

Pedestal Subtr.

Pulse Finder

HitTrackFinderTopo

TrackFitterLikelihood

ADC Raw Data

Pulses

Fitted Track

Pulses

TDC Raw Data

TrackFinderHoughTrafo

Cluster Finder

Cluster Separator

Clusters

Hits

Hit Calculator

Timepix Raw Data

Track Candidates

Hits

TrackFitterChi^2

Hits
Pulses

Hit Finder

Martin Killenberg (University of Bonn) MarlinTPC Installation 23

MarlinTPC Basic Reconstruction

Data Class Processor Name Collection Name
ConditionsProcessor

Pedestal TPCPedestal
ADCChannelMapping TPCChannelMapping
TrackerRawData TPCRawData

TrackerRawDataToDataConverter
TrackerData TPCData

PulseFinder
ChannelMapper1

TrackerPulse TPCPulses
HitTrackFinderTopoProcessor

TrackerHit TPCHits
Track TPCTrackCandidates

TrackSeeder
Track TPCSeedTracks

1This processor only need an input collection name, it is able to modify an existing collection.

Martin Killenberg (University of Bonn) MarlinTPC Installation 24

MarlinTPC Analysis

Look at the overview page of the Doxygen documentation:
MarlinTPC trunk/Analysis/doc/html/index.html

Martin Killenberg (University of Bonn) MarlinTPC Installation 25

Tasks for This Tutorial

Run the ReconstructStraightTracks.xml example!
Compare the processors, and the input and output collection names with
the overview on page 24.
Play with the verbosity level.

Modify the steering file to reconstruct a curler!
Change the name of the input file and the gear file accordingly.
The pedestal and channel mapping data are in a separate file.

Reconstruct Muons simulated with the MarlinTPC simulation/digitisation!

You do not need the channel mapper for these data.

Plot the Ω distribution of the reconstructed muons using the
TrackParametersDistributionProcessor!

To use the AIDAProcessor with RAIDA change the FileType to “root”.

You can run “Marlin -c steeringfile.xml” to check if all collections are there to
run successfully.

Martin Killenberg (University of Bonn) MarlinTPC Installation 26

	Overview
	LCIO
	Overview
	Interfaces and Implementations
	Data Classes
	Memory Management
	Example

	GEAR
	Example

	LCCD
	tpcconddata

	AIDA
	Marlin
	Processors
	Steering File

	MarlinTPC
	Digitisation
	Reconstruction
	Basic Reco
	analysis

	Tasks

