

Detection of Sbottom Squark Events with Small Visible Energy

Tomáš Laštovička

Gordana Medin and Andrei Nomerotski – with help of Sasha Belyaev

SiD Workshop 03/03/09

MOTIVATION

Sbottom and Dark Matter

- SUSY LSP particle neutralino is a potential dark matter candidate.
- In order not to have too many neutralinos left in the Universe, they must annihilate effectively.
 - This means that their mass difference to the next SUSY particle (sbottom in our scenario) should be small.
- Sbottoms can be eventually produced at ILC

This measurement is challenging due to softness of sbottom events and very large (not only) two photon background.

Followed by decay to neutralino a b-quark.

Phase Space Coverage

- We have selected our edge of sensitivity corner with the main sample being (M_{sb},M_{ne})=(230,210) plus two more demanding samples (230,220), (240,210) and one challenging (240,220).
 - We might be missing (220,210) if things will not go well for (230,220) though...

Sample Features

The samples are normalised to 1000 fb⁻¹ instead of standard 500fb⁻¹

- This corresponds to about 1300 events for M_{sb} = 230 GeV
- The sbottom samples are <u>unpolarised</u>
 - Obtained with CalcHep and "ported" to stdhep file format via Les Houches format and CalcHep's own format...
 - Hence SM background sample is reweighted accordingly.
 - <u>Constituent</u> quark mass for b-quark in CalcHep and Pythia is 5.5GeV instead of 5 GeV or less
 - we are at the production threshold and low mass would lead to problems with fragmentation.
 - Otherwise beamstrahlung, ISR, FSR all is ON and treated by CalcHEP and Pythia 6.

EVENT SELECTION

Jet Reconstruction

- Events are passed through complete chain, including lepton ID, LCFI package.
- Jets are reconstructed using Durham k_T algorithm with k_{Tmin} = 10GeV and not more than 2 jets reconstructed – as in our previous study.
 - So I basically take 2-jet event collection and look at k_T
 - Furthermore, 1-particle jets are discarded

Basic Selection Cuts

Neural Network should be able to internally perform simple "box cuts"

But its life is easier when some obvious cuts are done beforehand

These are:	E _{visible}	< 80 GeV
	DR _{jets}	< 3
	E _{jet1} ,E _{jet2}	> 5 GeV
	N _{veto}	< 1
	$max(\eta_1 , \eta_2)$	< 2
	N _{particles}	< 60
	$N_{particles}$	> 10

 N_{veto} – a number of electrons/photons with E>300MeV in "electromagnetic veto" = at very low angles (above 30mm at z=3000mm)

- Estimated from MCParticles, not simulated.

Event Distributions Before Cuts

Signal_(230,210) x10⁵ (red) and SM 500 background (black)

Background Events Composition

- The events are saved in text files for faster processing
 - And for NN training.
- Background is classified according to its IDRUP number.
- Total number of expected sbottom events based on σ is 1295.

Jet Rec

- jet reconstructed and saved
- After cuts
 - passing basic selection cuts (see next slide)

Classification	Jet Rec.	After cuts	
SIGNAL	1,282	976	
light_pair	3,847,890	1,478	
cC	1,317,400	554	
bB	1,269,330	293	
AA_to_anything	441,740,000	9,297,390	
eA_to_anything	46,005,300	1,256,310	most difficult one
eE_lightpair	368,870	33,415	
eE_AA(AAA)	3,909,250	0	
eEcC	4,506	4	
eEbB	314,625	32,437	
nN_lightpair	118,992	986	
nNcC	35,849	753	
nNbB	41,597	590	
eEeE	509,052	2,911	
eE	193,705,000	33	
eEneNe	160,705	233	
eEeEneNe	460	0	
eEeEeE	55	0	
qqen	1,934,040	2,437	
nNA	20,742	41	
nNAA	15 <i>,</i> 838	0	
nNAAA	4,781	0	
nNnNeE	73	0	
nNnN_lightpair	264	47	
eEeEcC	20	2	
NNNqqe	2,245	58	
eENNbB	17,282	2	
other	2,469,730	1	

Page • 10

Neural Network Analysis

- Modified FANN (Fast Artificial Neural Network) package is used:
 - Accounts for weights
 - Calculates NN input importance
- Topology 15+30+1 (inputs, hidden, output)
- No iterations: 4000

Vyrobit plots	Cut	Input
kТ	>10	
dR	<3.0	
acoplanarity		
max(eta1 , eta2)	<2.0	
NNb1, NNb2		
NNc1, NNc2		
NNcb1, NNcb2		
Ncharged		
Nparticles	10 <n<60< td=""><td></td></n<60<>	
Nelectron		
Nveto	== 0	
Evis	< 80 GeV	
Ejet1, Ejet2	> 5 GeV	
Npjet1, Npjet2	> 1	
mom_isotropy		

RESULTS

Page • 12

Interpretation of Results

Results are interpreted in terms of confidence level defined as

$$CL = \frac{S}{\sqrt{S+B}}$$

Rather than cutting on NN_{output} or plotting CL(NN_{output}) we show CL as a function of a number of potentially selected signal events S.

Neural Net Output

- Confidence level looks very good even when considering large error due to background statistics - which can even be guessed from the plot.
- Good sign: signal peaks at 1
 - note it is with weights and overwhelmed by massive background)

What is remaining?

Analyse other samples: (230,220), (240,210) and (240,220).

By-products for Lol

Other useful plots for Lol done in this analysis might be

- Jet tagging purity vs efficiency plots.
- Tagging efficiency as a function of the jet energy.

Please change slides to the ZHH presentation... Lastovicka_030309_ZHH.ppt

