

Higgs Self-Coupling with ZHH

Tomáš Laštovička

Yiming Li

SiD Benchmarking Meeting 03/03/09

FAST MC ANALYSES FULL SIMULATION AND RECONSTRUCTION ANALYSIS IMPLICATIONS FOR LOI

OUTLOOK

Summary of FastMC Analyses

There were two analyses done of ZHH with FastMC

- Both confirmed that with gluon FSR the analysis becomes extremely difficult
- Our best result with the LCFI package was ~60%

Leading to about 130 bbbbqq channel (well hidden) events.

FastMC Analyses – More Details

- Signal is ZHH when H→ bB and Z → qQ, i.e. 6 jets and at least 4 are b's coming from Higgs.
- The following background was only considered:
 - tbW
 - ZZH
 - ZH
 - ZZ
 - ZZZ
 - ZHH other channels
- tbW and ZZH being the worst ones

Full Simulation/Reconstruction Analysis

- We have two samples of 200k events each for nominal and 25% shifted values of f_{HHH}
 - Effectively about 133k events due to missing/empty files
 - They passed the complete chain including lepton ID and LCFI package
- The background is our Lol SM 500 sample with 6622k events (of 7196k)
 - Unexpected backgrounds, compared to FastMC
 - Plus imperfections of reconstruction
- FastMC was 100% polarised now we are at 80/30 pol \rightarrow less events
- I'm working on this last few days so the analysis may not be enough elaborated. Given the problems it has not much more can be expected for the Lol.

Selection Cuts

Before Neural Net is trained, events are preselected with the following cuts

- 1) No isolated lepton
- 2) $E_{gamma}/E_{jet} < 0.8$ for all jets
- 3) $E_{jet} > 10 GeV$ for all jets
- 4) $E_{visible} > 320 \text{ GeV}$
- 5) 0.55 < Thrust < 0.85
- 6) $Cos(\vartheta_{thrust}) < 0.95$
- 7) |pz| < 50 GeV
- 8) 14 < N_{charged} < 46
- 9) 110 < E_{thrust_hemisphere} < 320 GeV
- 10) $\Sigma b_{NN tag} > 2.0$ (2.5)

Neural Net Training

Neural Net Inputs are

- 1. The b tagging results for six jets;
- Invariant mass for variant jet combinatorics (and the difference with respect to gauge bosons, e.g Jet12H = (m_{jet1,jet2} - m_H)²). All the inputs used are: Jet12H, Jet13H, Jet14H, Jet23H, Jet24H, Jet34H, Jet56H, Jet56Z, Jet34W, Jet56W, Jet25W, Jet26W, Jet35W, Jet36W, Jet45W and Jet46W;
- 3. The variable representing the mass difference of reconstructed particles with respect to the signal/background final states. For example: $ch2_zhh = min\{(m_{j1,j2} - m_H)^2 + (m_{j3,j4} - m_H)^2\}$, where $\{j1, j2, j3, j4\}$ are all possible permutations for the first four jets (ordered by b tag value), assuming the two least b-like jets are assumed from Z. Similarly defined such variables are: $ch2_tt = min\{(m_{j1,j2} - m_W)^2 + (m_{j3,j4} - m_W)^2\}$ (where the two most b-like jets are assumed to be b jets), $ch2_zzh = min\{(m_{j1,j2} - m_Z)^2 + (m_{j3,j4} - m_Z)^2 + (m_{j3,j4} - m_H)^2\}$, and $ch2_zzz = min\{(m_{j1,j2} - m_Z)^2 + (m_{j3,j4} - m_Z)^2\}$.
- Sums of $b_{NN_{tag}}$, $c_{NN_{tag}}$ and $c(b)_{NN_{tag}}$ of all jets.
- Plus some more: k_T, y_{min}, y_{max}, N_{leptons}

Results

■ Statistical error of N_{signal} (and ZHH→bbbbqq cross section) as a function of N_{signal} itself

- Not "template fitted" results.
- Multiply by ~1.8 to get f_{HHH} measurement error...
- With some luck I can get to ~80% level but this is likely due to fluctuations (getting rid of few events with large weight) at low N_{signal} side

What's the troublesome background now?

Assuming some 'random' cut on NN output NN>0.5:

SIGNAL	39.4452	
ppppdq	2016.88	(tbW, ZZZ,ZZH,)
bB	86.9344	
bbqqEN	86.9344	
ttbb	26.0803	
ZHH	7.37863	(cross channel contamination)

This would corresponds to stat error of about 170% (x1.8 for f_{HHH})

Neural Net Output

There is not enough information in inputs provided to separate signal clearly.

Implications for Lol

Plot of f_{HHH} precision as a function of the jet energy resolution at page 10 of the draft is a pure dream (FastMC without FSR gluons).

 Given the (no)time constrains there is not much more to be expected for LoI from this analysis.