

### CLIC Detector Synergies with SiD R&D

**Konrad Elsener** 

#### for the LCD@CERN team

4 March 2009



#### Outline

- LCD project at CERN
- CLIC and ILC
- recent work in LCD@CERN (examples)
  - Magnet
  - Hadron calorimeter
  - Vertex detector
  - LumiCal
  - from CLIC000 to CLIC01\_SiD (27 Feb. 2009)
- future R&D at CERN
- further synergies with SiD R&D



#### **References:**

CERN Linear Collider Detector project <u>http://lcd.web.cern.ch/LCD/</u> CLIC Study <u>http://clic-study.web.cern.ch/CLIC-Study/</u>

2004 Report on CLIC Multi-TeV Physics http://documents.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow Report&id=2004-005

Talk Jean-Pierre Delahaye at ILC'08 http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=33&sessionId=9&confld=2628

Talk Lucie Linssen at LCWS'08 http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=148&sessionId=23&confId=2628

Talks Alain Hervé + Christian Grefe at LAPP Annecy Dec 2008

http://indico.cern.ch/materialDisplay.py?contribId=10&sessionId=1&materialId=slides&confId=46062 http://indico.cern.ch/materialDisplay.py?contribId=7&sessionId=0&materialId=slides&confId=46062

Talk Daniel Schulte at CERN Jan 2009

http://indico.cern.ch/getFile.py/access?contribId=7&resId=1&materialId=slides&confld=47141

4 March 2009





#### Linear Collider Detector Project at CERN

Who are we ? Lucie Linssen (project leader) Dieter Schlatter Konrad Elsener Peter Speckmayer (Fellow) Christian Grefe (Doct) Andre Sailer (Doct) + part time help from CERN staff + visitors

in close collaboration with LAPP Annecy Jean-Jacques Blaising Jan Blaha (Doct) ETH Zurich Alain Hervé





#### Linear Collider Detector Project at CERN

What is our goal?

We are working towards a linear collider detector which will operate in an energy range (CM) from 500 GeV to 3 TeV

working together with the ILC concepts (SiD, ILD, 4<sup>th</sup>) and with detector Collaborations (LC-TPC, EUDET, FCAL, CALICE).

In a concerted effort with the individual concepts, we would like to work towards describing the possible changes or upgrades to the ILC concepts to make them compatible with multi-TeV energies and CLIC beam conditions.





# We gratefully acknowledge SiD support Examples:

Setting up SiD software tools for CLIC simulations (-> CLIC000 detector "in general" looks like SiD)

3 TeV jets and calibrations

+ much other help from our "SiD consultants": Marcel Stanitzki, Jan Strube

Norman Graf, Steve Wagner, Ron Cassell

Matt Charles

. . .



**CLIC** scheme

Drive beam – 100 A, 240 ns from 2.4 GeV to 240 MeV



4 March 2009

SLAC SiD workshop Konrad Elsener (CERN)



## CLIC at 3 TeV and 500 GeV

#### Crossing Angle 20 mrad

| Center-of-mass energy           | CLIC 500 GeV                      | CLIC 3 TeV                           |
|---------------------------------|-----------------------------------|--------------------------------------|
| Total (Peak 1%) luminosity      | <b>2.3 (1.4)·10</b> <sup>34</sup> | 5.9 <b>(2.0)·</b> 10 <sup>34</sup> 🗲 |
| Repetition rate (Hz)            |                                   | 50 🗲                                 |
| Loaded accel. gradient MV/m     | 80                                | 100                                  |
| Main linac RF frequency GHz     | 12                                |                                      |
| Bunch charge [10 <sup>9</sup> ] | 6.8                               | 3.72                                 |
| Bunch separation (ns)           | 0.5                               |                                      |
| Beam pulse duration (ns)        | 177                               | 156 🗲                                |
| Beam power/beam (MWatts)        | 4.9                               | 14                                   |
| Hor./vert. IP beam size (nm)    | 202 / 2.3                         | 40 / 1.0 🗲                           |
| Hadronic events/crossing at IP  | 0.19                              | 2.7                                  |
| Coherent pairs at IP            | 100                               | 3.8 10 <sup>8</sup> 🗲                |
| BDS length (km)                 | 1.87                              | 2.75                                 |
| Total site length km            | 13.0                              | 48.3                                 |
| Total power consumption MW      | 129.4                             | 415                                  |



#### CLIC and ILC CLIC time structure

Train repetition rate 50 Hz



| CLIC: | 1 train = 312 bunches  |
|-------|------------------------|
| ILC:  | 1 train = 2820 bunches |



#### **Consequences for CLIC detector:**

- <u>Assess need</u> for detection layers with time-stamping
  - Innermost tracker layer with sub-ns resolution
  - Additional time-stamping layers for photons and for neutrons (if needed)
- Readout electronics will be different from ILC
- Power pulsing at 50 Hz, instead of 5 Hz



#### CLIC and ILC Beam-induced background

Background sources: CLIC and ILC similar

Due to the higher beam energy and small bunch sizes they are significantly more severe at CLIC.

- CLIC 3TeV beamstrahlung  $\Delta E/E = 29\% (10 \times ILC_{value})$ 
  - Coherent pairs (3.8×10<sup>8</sup> per bunch crossing) <= disappear in beam pipe</p>
  - Incoherent pairs (3.0×10<sup>5</sup> per bunch crossing) <= suppressed by strong B-field</li>
  - γγ interactions => hadrons
- Muon background from upstream linac
  - More difficult to stop due to higher CLIC energy (active muon shield)
- Synchrotron radiation
- Beam tails from the linac
- Backscattered particles from the spent beam (neutrons)



## Recent work in LCD@CERN



### Magnet Coil and Yoke Parametric Model by Alain Hervé



4 March 2009

12



#### Mass of Yoke in tons





#### Total Cost of Magnet System





Hadron Calorimeter

Courtesy Peter Speckmayer, Christian Grefe

Tungsten – Scintillator calorimeter

Conventional Calorimetry, resolution for 6,7,8,9 -> 40  $\lambda$ 





Hadron Calorimeter Courtesy Peter Speckmayer, Christian Grefe





Hadron Calorimeter Courtesy Peter Speckmayer, Christian Grefe





**Vertex Detector** 

#### Production of incoherent pairs (courtesy Daniel Schulte)



4 March 2009

SLAC SiD workshop Konrad Elsener (CERN)



#### **Vertex Detector**

Vertex detector hits from incoherent pairs, B=5T, two angular coverages (courtesy Daniel Schulte)





#### LumiCal

Beamstrahlung Background on LumiCal at CLIC 3 TeV (courtesy Iftach Sadeh) Energy MINAR [GeV/mm<sup>2</sup>] CMS energy = 3000 GeV Hits in XY Magnetic Field = 4T (solenoid) ۲ [cm] 10<sup>6</sup> Crossing angle = 0.02 rad 1 bunch crossings Energy [GeV] (0.2 cm bins) 20 10<sup>6</sup> 10<sup>5</sup> Energy per 10<sup>5</sup> 10 radial bin 10<sup>4</sup> 10<sup>4</sup>  $\square$ O 10<sup>3</sup> 10<sup>3</sup> 10² F 10<sup>2</sup> -10 10 10 -20 1⊧ No anti-DiD 10 20 30 20 -10 10 -20 0 Distance from LumiCal center [cm] X [cm] 4 March 2009 SLAC SiD workshop 20 Konrad Elsener (CERN)



### LumiCal

Beamstrahlung Background on LumiCal at CLIC 3 TeV (courtesy Iftach Sadeh)



Konrad Elsener (CERN)



#### LumiCal

Bhabha events on LumiCal at CLIC 500 GeV and 3 TeV for LumiCal radii 10 -> 35 cm (courtesy Iftach Sadeh)





from CLIC000 to CLIC01\_SiD (meeting 27 February 2009)

NB. CLIC000 September 2008: very first attempt at 3TeV based on SiD-01 **Decision last Friday:** start by freezing B-field and coil R<sub>freebore</sub> 2.90 m 5 T define HCAL (barrel) passive and active layers option 1 W, 1 cm Scint. 5 mm + G10 2.5 mm -> 8.5  $\lambda$  (+1  $\lambda$ ) option 2 Fe 2 cm same -> **6.5**  $\lambda$  (+1  $\lambda$ ) later: study hybrids of W with Fe or xyz 4 March 2009 SLAC SiD workshop Konrad Elsener (CERN)



from CLIC000 to CLIC01\_SiD (meeting 27 February 2009)

**Decision last Friday:** 

leave ECAL unchanged (W-Si, SiD\_01) leave tracker  $R_{outer}$  unchanged (R ~ 125 cm) leave tracker unchanged

change vertex innermost layer radius: R = 30 mm -> adjust barrels and discs

still too conservative ? to be checked



#### from CLIC000 to CLIC01\_SiD (meeting 27 February 2009)

#### vertex detector choices - short barrel r = 30 mm





# Future R&D topics at CERN

Time stamping (reject background events from other bunch crossings - 0.5 ns apart)

W or W-mix (Pb, Fe, ?) hadron calorimeter

Alternative to PFA calorimetry (e.g. dual readout calorimetry)

Synergy of R&D (approved CERN) between LC and SLHC for on-detector powering and for integrated silicon pixel detectors

Mechanical engineering issues: Integration, heavy HCAL, coil, stability issues, vibration etc.



#### Future topics at CERN

Aspect ratio / length of barrel

- a) at 3 TeV important physics more forward/backward increase tracker length ?
- b) cf. discussion on field homogeneity at B = 5 T

Anti-DID or DID

Beam physics (luminosity) vs. LumiCal

BeamCal and "mask"

background onto BeamCal, backscattering into sub-detectors

Preliminary list



# further synergies with SiD

Preliminary list

taken from slides by Marcel Stanitzki, 17 Sept 2008

- HCAL choice of absorber and readout
- Performance at 1 TeV (-> 3TeV)
- Physics Performance

others

- B-field choice: 5T or lower ?
- Coil conductor R&D

(replace pure AI by Ni doped alloy, replace electron beam welding by less expensive technique, general optimisation...)

• continuation of infrastructure / engineering effort



# further synergies with SiD Preliminary list

 joint ILC-Concepts + LCD@CERN software workshop 28/29 May 2009 at CERN

contact: Dieter.Schlatter@cern.ch

- further unification in the Linear Collider Detector software
  - detector description (geometry)
  - "data model" and file formats
  - standardize digitisation
- joint SiD CLIC meeting to discuss a 0.5 3 TeV detector ? When ?



## INVITATION

A) Visitors to LCD@CERN project are always welcome; short term or longer term possible (support exists)

B) Special type of Fellowship – COFUND
(Post-Doc, 3 years, applications from non-CERN-member states are welcome; <u>applications exclusively in 2009</u>)
selection: based on the <u>research project presented</u>
-> we will be happy to help draft a project



# Thank you !

4 March 2009

SLAC SiD workshop Konrad Elsener (CERN)



## **Spare Slides**

#### recent work for CLIC – Andrey Sapronov, 2008 (inspired by 2004 CLIC report and work on ILC)

"dummy volume" to count background particles

16 February 2009



CLI



16 February 2009

## Hadron Calorimeter



Digital readout (Threshold = 0 MIP) vs energy deposited per pad for different absorber materials: Fe, Pb, and W in an energy range from 3 to 150 GeV







SLAC SiD workshop Konrad Elsener (CERN)

PRELIMINARY



Hadron Calorimeter Courtesy Peter Speckmayer, Christian Grefe

Fraction of events with at least 90% containment in the calorimeter **single**  $\pi$ +





Hadron Calorimeter Courtesy Peter Speckmayer, Christian Grefe

Fraction of events with at least 90% containment in the calorimeter **U** jets





Hadron Calorimeter

Courtesy Peter Speckmayer, Christian Grefe

Average leakage (E=[250,300]GeV)





Hadron Calorimeter Courtesy Peter Speckmayer, Christian Grefe

(conventional calorimetry) energy resolution ("infinite" HCAL)





Hadron Calorimeter Courtesy Peter Speckmayer, Christian Grefe

(conventional calorimetry) energy resolution ("6 lambda" HCAL)



CLIC detector design

#### LC TPC Large Prototype Beam Test at DESY LC TPC Collaboration with EUDET Facility





#### Thickness of Winding (in mm)



4 March 2009

SLAC SiD workshop Konrad Elsener (CERN)

42



# **Conclusions-II**

Alain Hervé, ILD Workshop, Seoul 17 February 2009, 4365-ILD-T-Coil-Developments.ppt

There is a starting R&D effort at CERN for the conductor:

- To review and optimize the conductor geometry.
- To replace pure aluminum by a Ni doped alloy, as used in the ATLAS central solenoid (Yamamoto et al.), and produce a demonstration length.
- To replace the electron beam welding by a less expensive process.

# It would thus be judicious for ILD to join this R&D effort.

# SiD Forward Region



Centered on the outgoing beam line

