AL Status 02.03.2009 Ray Frey , Marcel Stanitzki University of Oregon STFC-Rutherford Appleton Laboratory

The SiD ECAL

- We know what we want for the LoI
 - Silicon + Tungsten
 - R=1.27 m z= 1.7 m
 - $-26 X_0$
 - 17% /sqrt(E) resolution
- Two readout options
 - Analog readout with KPix (baseline)
 - Digital readout using MAPS (option)
- Both fit in one mechanical design

So far so good ...

- What is in the LoI so far
 - Introduction (needs work)
 - Description of the ECAL global design
 - Plots from Marco
 - Baseline option (too long)
 - MAPS option (Make it coherent with baseline section)
 - Performance plots for the baseline (to come)
 - R&D chapter (needs real work)

Some Comments

- We are not short on material
- But we could be more concise
- And are quite frankly too long ...
- 10 pages and we do not even have all the material in
- For the ECAL we like to keep all option in the main document

What is in the pipeline

- Performance plots for the baseline (Ron)
- Linearity plot for the MAPS (Marcel)
- π^0 Separation (Paul)
- Plan to have all these ready for the LoI

• SiD

Plans for this workshop

- The usual suspects will get together here
 - Fix Introduction (easy)
 - Cut down baseline option and MAPS (make things shorter)
- R&D chapter is a big issue
 - Need guidance from the Editors and SiD ...
 - What should we write there?
- Additional Material ...
 - Incorporate it as best as possible

Open Questions

- How many pages should we go for ...
 - Editors, please make an executive decision
- Other issues
 - There is the question on why 17 %/ sqrt(E) ...
- Gluing together the PFA and dual-readout is quite challenging ...

IDAG items

- 1 TeV running ...
 - Can always make ECAL deeper if needed
- Calibration and alignment
 - We have some words on calibration
 - We did not say anything on the required accuracy of the alignment

R&D chapter

- Builds around Testbeam Stacks
- 30 layer device for the baseline option
 - Needs 1024 channel KPix
 - 30720 channels
 - Results by 2012 (?)
- 16 layer Digital ECAL stack
 - Using a large TPAC sensor (maybe 5x5 cm)
 - 64 million channels
 - Results by 2012

Some more news

- Poorer-than-expected noise performance of KpiX seems to be understood.
- We will be able to confirm this in KpiX-8, back in 3 month with 256 channels
- If it works, go ahead with the 1024-channel KPiX
- There has been some good progress on bump bonding recently. We have a new vendor who is making good gold-stud bonds.

Funding ...

- What do we need to say about this?
- Baseline option
 - DOE funding has been requested via SiD
- Digital Stack
 - UK Funding received as part of SPiDeR program
 - Starting from 1st of April (Beginning of UK financial year)