H -> mu mu

Marcel Stanitzki Jan Strube Rutherford Appleton Laboratory

Motivation

- Clean sample for benchmarking
 - Fully reconstructed event w/ recoil
 - Or empty detector w/ two muons
- Ideal channel for testing the Yukawa coupling to the second generation

Tracking algorithms, Muon ID, Tracking hardware can be benchmarked

Samples

Signal

- Inclusive H -> mu mu
- Recoil + WBF channel

Background

- 2, 4, 6 fermion channels (+ n photons)
- (after requiring two identified muons)

H -> mu mu + hadronic Z

- Prototypical recoil measurement
 - Fully reconstruct the Z, muon pair comes from the SM higgs
 - Model-independent Higgs mass measurement

EventShape

At 250 GeV Z and H almost at rest

Exploit acoplanarity

Backgrounds

- For the hadronic channel:
 - 4f -> qqµµ is the biggest background
 - Mainly from ZZ production
 - Irreducible at some level
- Just a number game
 - ZZ vs HZ ~ 10:1
 - ZZ-> qqμμ vs HZ-> μμqq ~ 2500:1

Event Selection

- ► N_{tracks}>5
- ▶ E_{vis}> 190 GeV
- Jet Selection
 - Leading Jet 30<E_{jet1}<105 GeV
 - Second Jet 10 $< \vec{E}_{jet2} < 70 \text{ GeV}$
 - Jet1 $P_T < 90 \text{ GeV}$ & Jet2 $P_T < 60 \text{ GeV}$
 - Y_{cut} >0.05 (forcing two jets)

Cont'd

- > Dimuon Mass $100 < M_{\mu\mu} < 140 \text{ GeV}$
- Angular cuts (Events are back to back)
- cos θ _{μμ} <-0.5
- cos θ_{BB} <-0.8 Reconstructed Bosons tend to be really back to back
- Distance of muon to any jet (rad)
 - >0.1
- Boson Acoplanarity > 2.8 (rad)

Event chisquare

$$\chi^{2}_{ZZ} = \left(\frac{m_{\underline{x}t,\underline{x}t} - m_{Z}}{C_{\underline{x}t,\underline{x}t}}\right)^{2} + \left(\frac{m_{\mu\mu} - m_{Z}}{\sigma_{\mu\mu}}\right)^{2}$$

$$\chi^{2}_{HZ} = \left(\frac{m_{JetIet} - m_{Z}}{\sigma_{JetIet}}\right)^{2} + \left(\frac{m_{\mu\mu} - m_{H}}{\sigma_{\mu\mu}}\right)^{2}$$

Testing the compatibility the event with either hypothesis !

Events

Events

Selection Efficiencies (hadronic)

	Ev	rents	Efficie	Efficiency		
Cut	Signal	Background	Signal	Background		
00 two muons required	4663389.3	17.18	92.8%	96.0%		
01 Charged Tracks hadronic	26665.9	12.03	65.0%	95.9%		
02 Evis hadronic Cut	19567.1	11.98	64.7%	95.7%		
03 Jet Selection Cut	16683.6	11.82	63.8%	94.4%		
04 Muon Mass Window	1519.3	11.49	62.1%	91.8%		
05 MuonMuon Angle Cut	1297.9	11.32	61.2%	90.5%		
06 BosonBoson Angle Cut	1129.3	10.9	58.9%	87.2%		
07 Min Isolation Angle Cut	870.7	10.84	58.5%	86.6%		
08 Boson Acoplanarity Cut	792.1	10.51	56.8%	84.1%		
09 ZZ qqqmm chisquare Cut	260.7	10.04	54.3%	80.4%		
10 HZ qqqmm chisquare						
Cut	71.4	8.86	47.9%	71.0%		

	Z to qq			Z to nunu			Z to II		
Cut	Event s	Total Efficency	channel efficiency	Event s	Total Efficency	channel Efficiency	Event s	Total Efficency	Channel efficiency
00 two muons required	11.9	64.3%	96.0%	4.1	22.0%	96.0%	1.2	6.6%	64.3%
01 Charged Tracks hadronic	11.9	64.2%	95.9%	0	0.0%	0.0%	0.1	0.8%	7.8%
02 Evis hadronic Cut	11.9	64.1%	95.7%	0	0.0%	0.0%	0.1	0.6%	6.1%
03 Jet Selection Cut	11.7	63.3%	94.4%	0	0.0%	0.0%	0.1	0.6%	5.6%
04 Muon Mass Window	11.4	61.5%	91.8%	0	0.0%	0.0%	0.1	0.6%	5.5%
05 MuonMuon Angle Cut	11.2	60.6%	90.5%	0	0.0%	0.0%	0.1	0.5%	5.4%
06 BosonBoson Angle Cut	10.8	58.4%	87.2%	0	0.0%	0.0%	0.1	0.5%	4.9%
07 Min Isolation Angle Cut	10.7	58.0%	86.6%	0	0.0%	0.0%	0.1	0.5%	4.9%
08 Boson Acoplanarity Cut	10.4	56.4%	84.1%	0	0.0%	0.0%	0.1	0.4%	4.1%
09 ZZ qqqmm chisquare Cut	10.0	53.9%	80.4%	0	0.0%	0.0%	0.1	0.4%	3.9%
10 HZ qqqmm chisquare Cut	8.8	47.6%	71.0%	0	0.0%	0.0%	0.1	0.3%	2.7%

Background Sample Composition

Cut	ff	ffff	ff+ng	ffff+g
two muons required	750830	98364.3	2415000	399187
Charged Tracks hadronic	1010	20642.9	5000	9
Evis hadronic Cut	660	18907.1	0	0
Jet Selection Cut	530	16153.6	0	0
Muon Mass Window	80	1439.3	0	0
MuonMuon Angle Cut	80	1217.9	0	0
BosonBoson Angle Cut	40	1089.3	0	0
Min Isolation Angle Cut	10	860.7	0	0
Boson Acoplanarity Cut	10	782.1	0	0
ZZ qqmm chisquare Cut	0	260.7	0	0
HZ qqmm chisquare Cut	0	71.4	0	0

Final mass plot

H + invisible

- 'Empty' detector allows for precision measurement
 - No confusion for tracking, no PFA
- Signal sample is swamped by SM background

Cut and count

- 2 identified muons and no other tracks
- 130 GeV < Visible energy < 150 GeV</p>
- 80 GeV < charged energy < 150 GeV</p>
- Missing mass > 40 GeV
- Missing momentum < 90 GeV</p>
- 100 GeV < mass < 130 GeV</p>
- Cos(muon opening angle) < -0.35</p>

Selection Efficiencies (invisible)

Cut	H to	mumu	SM Background		
	Events	Efficiency	Events	Efficiency	
00 two muons required	17.2	92.8%	4663389.3	2.20%	
01 Charged tracks	4.06	21.9%	4376478.9	2.10%	
02 visible Energy	3.42	18.5%	706483.1	0.03%	
03 charged Energy	3.41	18.4%	694598.6	0.02%	
04 missing mass	3.41	18.4%	165200.7	0.01%	
05 missing momentum	3.41	18.4%	38384.3	0.01%	
06 mass	3.31	17.9%	17595.0	0.00%	
07 muon opening angle	3.30	17.8%	15687.1	0.00%	

H mu mu LOI note

In preparation

- Hadronic channel 70 % complete
- Invisible channel remains to be done

First draft this week

Summary

- Higgs + hadronic Z is shaping up quite nicely
- Higgs + invisible has just started and needs work
- H -> mu mu is a great channel for detector benchmarking
 - For LOI, we limit ourselves to measuring a cross-section
- Also great channel for algorithm benchmarking
 Mapping out the post-LOI work

What could be improved?

Improved Track reconstruction

- I think we can do better than 300 MeV
- Something for post Lol
- Bremsstrahlung recovery …
- Muon ID
 - Could use some work post Lol
- Multivariate techniques
 - We could if we had enough events to train