Status Report on Two Photon Veto with the BeamCal

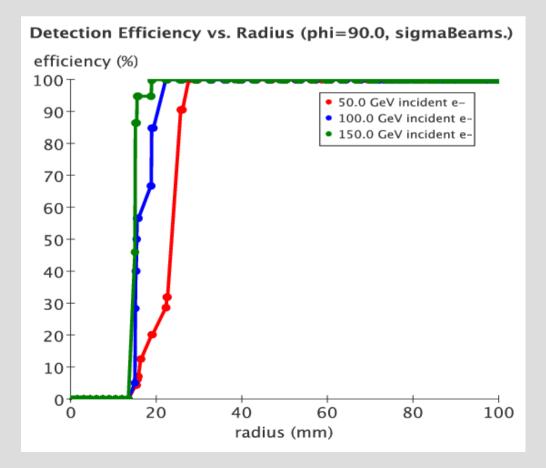
Jack Gill Gleb Oleinik Uriel Nauenberg

University of Colorado

Objectives

- Ultimate objective: measure the $\tilde{\tau}_1^{\pm}$ mass to an accuracy of ±1 GeV (Benchmark 6 in [1])
- Current objective: veto two photon background using BeamCal.

Motivation


- The Cold Dark Matter relic density has been measured by WMAP, will be measured more accurately by Planck
- Density is determined by stau-neutralino coannihilation rate, which is in turn determined by the stau-neutralino mass difference
- Neutralino mass measured via selectron or smuon signal [2]
- Accurate measurement of this mass difference will allow a comparison between ILC and Planck results. [3]

Outline

- So far we have focused on signal final states with two leptons
- Largest background: two photon process, which leads to four lepton final states with two (beam) electrons in the far forward region
- Suppress two photon background by finding all leptons, using BeamCal in forward region

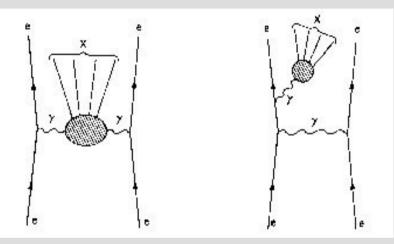
BeamCal

- Covers 7 44 mrad
- New efficiency study by Gleb Oleinik:

Signal

- Point D': $M_0 = 110, M_{1/2} = 525, A_0 = 0, tan(\beta) = 10, \mu = -658.26$ [4]
- (e- polarization, e+ polarization) = (80% L, 30% R)
- Ecm = 500 GeV

Cross section for $e^+e^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^-$ is 3.7 fb


Branching ratio for $\ \widetilde{ au}_1^\pm \to au^\pm \widetilde{\chi}_1^0 \$ is ~100%

τ branching ratios: $\frac{\tau^{\pm} \to e^{\pm} \overline{\nu_e} \nu_{\tau} = 17.84\%}{\tau^{\pm} \to \mu^{\pm} \overline{\nu_{\mu}} \nu_{\tau} = 17.36\%$

Final state cross sections: $\sigma_{e^+e^-} \approx \sigma_{\mu^+\mu^-} \approx \sigma_{e^\pm\mu^\mp} \approx 0.4 fb$

Two Photon Background

Main background is two photon process:

Phys Rev D 4, 1532.

Cross section is high:
$$\begin{split} \sigma_{e^+e^-} &\approx 3*10^8 fb \\ \sigma_{\mu^+\mu^-} &\approx 1*10^7 fb \\ \sigma_{\tau^+\tau^-} &\approx 2*10^5 fb \end{split}$$

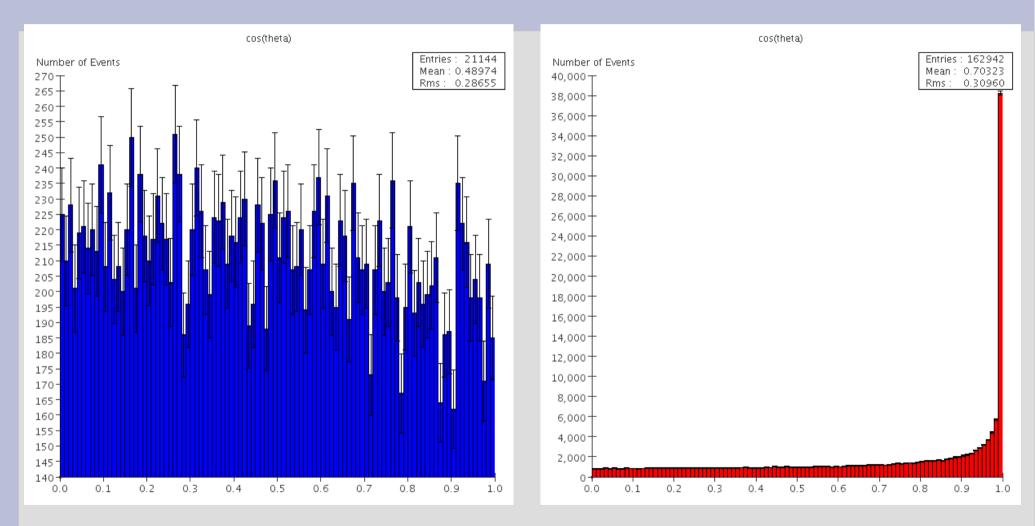
Note: cross sections calculated using WHIZARD, depend on EPA parameters

Other Backgrounds

- SUSY
 - Selectrons: 3.2 fb
 - Smuons: 3 fb
 - Higgs-Z: 96 fb
- SM
 - Two photon \rightarrow quark antiquark
 - Bhabba scattering
 - W+W-

Event generation

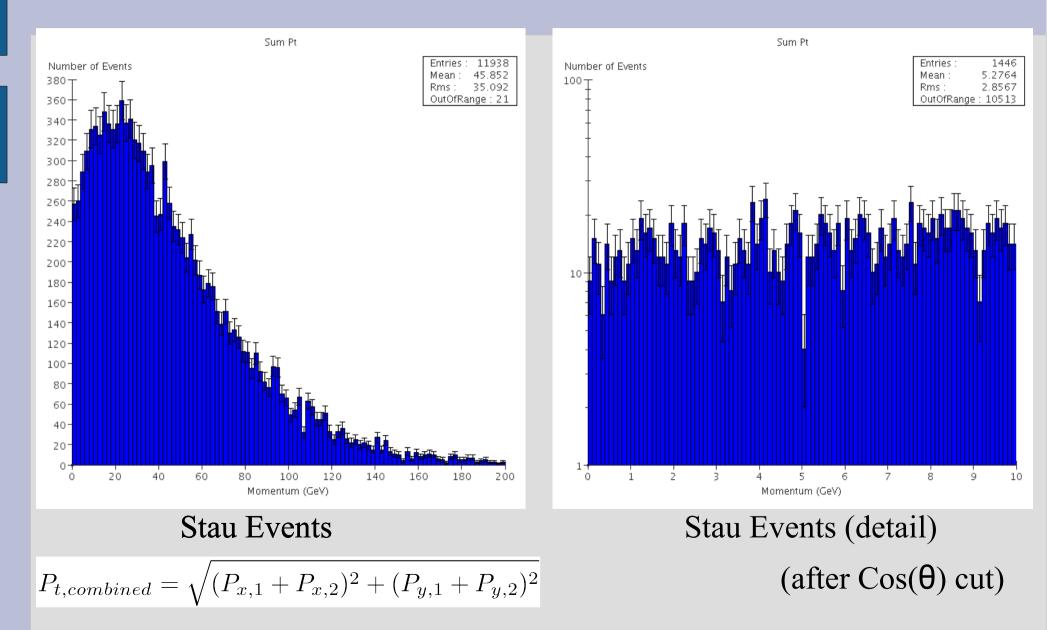
- Integrated Luminosity: 100 fb⁻¹
- Used WHIZARD 1.92
- For SUSY signal generation used benchmark point D' (Δm ~ 6 GeV)
- Account for effect of beamstrahlung on center of mass energy
- For two photon process, used EPA
 - EPA_mX = 4 GeV (minimum invariant mass of produced system)
 - $EPA_Q_max = 4 GeV$ (maximum virtuality of photon)
- Need better understanding of how two photon cross sections are calculated

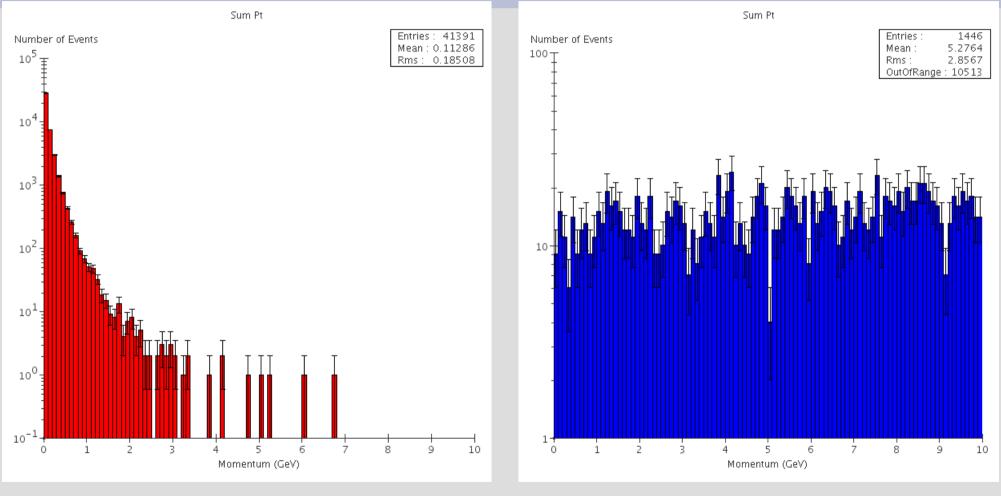

Detector Simulation

- Define barrel as $\theta > 0.044$ rad, BeamCal as $\theta < 0.044$ rad
- Barrel is assumed to have 100% efficiency for electrons and muons
- BeamCal electron efficiency given by Gleb's lookup table. BeamCal is assumed to have no MIP sensitivity.

Analysis

- Select events with two visible leptons in the final state (efficiency cut)
- Cuts on kinematic variables necessary to reduce background
- Possible variables: acoplanarity, invariant mass, etc
- At present, consider only two variables: cos(θ) and combined Pt


Cos(0) Cut


Stau (Not to scale)

Two Photon

Combined Pt - Signal

Combined Pt – Signal and Background

Two Photon

Stau (Not to scale)

(after $Cos(\theta)$ cut)

Cuts

- Cuts used:
 - Efficiency Cut (2 lepton final state)
 - $-|\cos(\theta)| < .95$
 - Pt_combined > 8 GeV
- These cuts are fairly aggressive, necessary due to high cross section of background
- Cuts on other kinematic variables may be desirable to preserve more of signal

Preliminary Results

Туре	# Events (all final states)	# Events (2 lepton final states) BEFORE cuts	# Events (2 lepton final states) AFTER cuts	% remaining after cuts
$\gamma^*\gamma^* \rightarrow \text{leptons}$	3.5*10 ¹⁰	7.1*10 ⁹	0	0
Stau	367	45	33	73

Note: two photon events weighted by a factor of 100,000 – statistical fluctuations have a large effect here.

Two photon background with leptonic final states is vetoed, while retaining 73% of signal

Conclusions

- Preliminary results show two photon background with leptonic final states can be adequately suppressed by kinematic cuts.
- Future work:
 - Improve event generation:
 - Increase two photon statistics significantly
 - validity of EPA? [5]
 - Include other sources of background
 - Barrel detector simulation (MCFast to start, later full simulation/reconstruction)
 - Cuts on additional variables (acoplanarity, etc) to remove additional background while preserving as much of signal as possible

References

[1] M. Battaglia et al, "Physics Benchmarks for the ILC Detectors." hep-ex/0603010
[2] C.F Berger et al, "General Features of Supersymmetric Signals at the ILC: Solving the LHC Inverse Problem." arxiv:0712.2965v2
[3] P. Bambade et al, "Experimental Implications for a Linear Collider of the SUSY Dark Matter Scenario." hep-ph/0406010v1
[4] M. Battaglia et al, "Updated Post-WMAP Benchmarks for Supersymmetry." hep-ph/0306219
[5] J. Kalinowski et al, "Pinning down the invisible sneutrino." arxiv:0809.3997