

ART and the Fermilab Program

Bob Kephart

Mission:

- Work with the GDE Americas Regional Team (ART) to develop the ILC design & gain approval of the project Goals:
- Participate in the Technical Design Phase (TDP)
- Participate in Accelerator Physics, Conventional Facilities Design, and global systems work to further develop the ILC design
- Work towards GDE SRF goals
 - S0: Cavity gradient of 35 MV/m; good yield
 - S1: Cryomodules with average gradient > 31.5 MV/m
 - S2: One or more ILC RF unit with ILC beam parameters
- Perform R&D and value engineering to reduce costs
- Become a trusted international partner

ILC: FNAL Scope of Work

- Accelerator Physics and Beam Design
- Conventional Facilities Systems
- Global Systems Instrumentation, LLRF, Cryogenics, Controls, etc
- SRF Cavity and Cryomodule development

 Majority of effort
- Host the Americas GDE "office"

Project X

New intense Proton Source at Fermilab, endorsed by HEPAP

- -2 MW of beam power over the range 60 120 GeV
- Simultaneous 150 kW of beam power at 8 GeV;Upgradable to 2-4 MW
- Based on 8 GeV SRF based "ILC-like" Linac (Synergy!)
- FNAL pursuing both Energy & Intensity Frontiers in parallel (ILC, Px)

FNAL SRF Program (related)

Funded under a separate B&R and not formally part of this review

Mission:

- Develop SRF infrastructure at FNAL and perform R&D to master the technology for future accelerator projects (e.g. ILC or Project X)
 Goals:
- Master fabrication & processing of cavities & cryomodules
- Build SRF infrastructure that is difficult for industry to provide
 - Large cryogenic & RF systems, cavity & cryomodule testing systems, etc.
- Operate facilities to acquire required expertise
- Transfer SRF technology to U.S. industry
- Participate in national & international collaborative SRF R&D

SRF R&D Scope of Work

- Develop & Operate SRF infrastructure
 - Joint ANL/FNAL Processing Facility
 - Vertical Test Systems (VTS)
 - Cavity & Cryomodule Assembly Facility (CAF)
 - Horizontal Test Systems (HTS)
 - RF unit Beam Test Facility (ILCTA_NML)
 - Stand-alone Cryomodule Test Stand (CTS)
- Purchase cavities (ILC only provides cryomodule parts)
- Provide infrastructure for generic SRF Material R&D
- FNAL SRF infrastructure plan reviewed by DOE in Feb 07
 - Focused on infrastructure for ILC 1.3 GHz elliptical cavities
 - Changing scope... now support industrialization of SRF
 - Revised U.S. HEP priorities include Project X @ FNAL and ILC on a slower time line... but large overlap of Px and ILC goals
- DOE review of FNAL SRF program scheduled for May 18-19.
- Related SRF programs include Project X, HINS, and 3.9 GHz R&D

SRF Funding @FNAL

This review

- Synergy (by design)
 - e.g. ILC R&D supports
 Px since they employ similar cavities & CM
 - SRF efforts often share common personnel and infrastructure.
- SRF at Fermilab including SRF for ILC is managed as an integrated whole
 - Allows for rational cost sharing & efficiencies

means ILC used to fund this prior to FY08 Omnibus bill

Fu	nding source	B&R Beta=1	B&R Beta=1	B&R Beta=1	PX RD&D Betæ0.8	HINS Spoke	3.9 GHz
	B&R KA15-	02 02-1	02 01-2	?		02 01-1	
Co	mponent Development						
	Cavity Development	\rightarrow	х	x	х	х	х
	Couplers (ILC@SLAC)	X		X	x	х	х
	Tuners	X		X		х	х
	Cavity Dressing	X		x		x	х
	Cryomodules	X		X	x	x	х
	RF CM distribution(SLAC)	x		x			

Infastructure Fabrication

Cavity Infrastructure		X	X	x	X
Vertical Test Systems	\rightarrow	х	x		х
Horizontal Test System	\rightarrow	х	x		
Cryomodule Assembly	\rightarrow	х		x	
EP processing ANL/FNAL & JLAB	\rightarrow	х	x		
RF unit Test Facility (NML)		х	x		
NML buildings and new cryoplant			X		
SRF materials infrastructure		x			
Spoke Resonator & 3.9 BCP@ANL		x		x	х
325 MHz VTS for Spokes				x	
Spoke Resonator HTS				x	
Cryomodule test stand		x			

Facilities Operations

EP & BCP processing ANL	x			x	X	X
EP processing & VTS @ JLAB	x			x		
Industrial EP & alternate processing			x			
Bare cavity test (VTS)	x			x		X
Cavity Dressing	x			x	X	X
Dressed cavity Test (HTS)	x			x		X
Cryomodule Assembly	x			x	X	
Cryomodule test		x		x		
RF unit test		x				
SRF materials and EP Dev.		x				
Spoke Resonator Vertical Test					X	
Spoke Resonator HTS					x	

Global design effort

2009 DOE/NSF review

- Effort In FY08 obviously limited by FY08 Omnibus Bill
- Accelerator Physics and Beam Design
 - Participated in the global effort to design the machine
 - Simulation of emittance preservation in RTML and Main Linac
 - Studies of kick due to RF coupler and effects on emittance
 - Single stage bunch compressor simulation

Conventional Facilities Systems

- Lead the U.S. and Global effort for CFS
- Value engineering and cost reduction for the baseline design
- Evaluated alternative tunnel configurations (single, shallow)

Global Systems

- Built/ installed 20 high resolution (<5 μ) BPM's for ATF
- Developing new cold cavity BPM's for ILC cryomodule
- Wire Position Monitors, BPM, Faraday cups etc for CM1 @NML
- LLRF: 9 ma studies @ FLASH, Built HOM readout electronics
- Contributed to global effort to design ILC cryogenic systems

- Despite funding turmoil, good progress on SRF technology at FNAL with the funds supplied by the ILC & SRF B&R in 1st quarter and other KA15 B&R funds (3.9 GHz, HINS, Project X)
- FNAL has several new SRF facilities now in full operation
 - New Vertical Test Stand; tests bare cavities (35 tests in FY08-09)
 - New Horizontal Test Stand; tests dressed cavities (5 tests in FY08)
 - Cryomodule Assembly Facility; 2 CM assembled in MP9 & ICB
- Other Infrastructure was delayed substantially by Omnibus
 - Infrastructure to dress 1.3 GHz nine-cells (1st nine-cell this month)
 - ANL/FNAL Joint EP Processing; commissioning,(10 single cell tests)
 - RF unit test facility at New Muon Lab; under construction
 - 8-12 month delays due to Omnibus and FY09 CR

- FNAL has built a variety of SRF components
 - Cavities: 48 ordered, 22 from U.S. industry
 - Cryomodules: Assembled 2 cryomodules with CAF
 - CM1 = Type III⁺ assembled from DESY kit of parts
 - Designed/assembled a 3.9 GHz CM for DESY
 - Parts in hand for cold mass of a 2nd type III⁺ CM... need dressed cavities
 - Type IV CM design ~ complete and ordering parts in FY09
- SRF Materials program established
 - Single-cell program for U.S. cavity vendor development
 - EP process development for ANL/FNAL joint system
 - Improved diagnostics (thermometry, optical insp)
 - Understanding reasons for poor performers (weld pits)

- Industrialization (was ILC funds \rightarrow SRF funds)
 - ILC cavities built by U.S. vendors (AES, Roark/Niowave)
 - Engaging several industrial vendors in cavity surface processing
 - Engaging sevral U.S. vendors to produce type IV CM parts
 - Limited by funding but ARRA funds will help this a lot
- Extensive network of collaborations (mostly SRF Technology)
 MOU's with 18 institutions
- Host the Americas Regional office of GDE
 - FNAL personnel in key GDE positions: Ross, Kerby, Garbincius, Champion, Mitchell, Carter, Kuchler, etc
 - Offices, admin support, PM salaries, travel, etc

ANL/FNAL Joint EP Facility

Facility being commissioned (~ 1yr Omnibus Delay) Provides complete processing of 1.3 GHz cavities: electro-polishing, ultrasonic cleaning, high-pressure rinse, assembly

Expect significant contribution of ANL/FNAL joint facility to ILC R&D in next yr

• Practice run with 9 cell cavity

- 10 single-cell EP processes complete with excellent performance >30 MV/M
- Plan 1st real attempt on 9-cell with full facility imminent

New Ultrasonic cleaning system

New High-pressure rinse system

Vertical Test System

- 35 cavity tests in FY08/FY09, where "test" = cryogenic thermal cycle
 - 9-cell & single-cell elliptical cavities, and a SSR1 HINS cavity
 - instrumentation development, variable coupler, thermometry, cavity vacuum pump system, cavity vendor development
 - Cavity tests dedicated to ANL/FNAL CPF commissioning

Vertical Test System

900 sensors/cell! but multiplexed

Upgrades in progress

- -9-cell thermometry
- -Two more vertical dewars
- More top plates
- Improved cryogenics
- Increased throughput
 15→250 tests/yr

2009 DOE/NSF review

Horizontal Test Stand

- Tests Dressed Cavities with Pulsed RF Power
 - as they will see in a cryomodule
- Fully commissioned in FY08 and in operation
- In FY08-09:
 - Tested one 1.3 Ghz Cavity
 - Tested five dressed 9-cell 3.9 GHz cavities for DESY
- Will be used to qualify dressed 1.3 GHz cavities in 2009

MDB Infrastructure

Americas

Global design effort

2009 DOE/NSF review

Cryomodule Assembly Facility

Americas

- Goal: Assemble R&D Cryomodules
- Where: MP9 and ICB buildings
 - MP9: 2500 ft² clean room, Class 10/100
 - Cavity dressing and string assembly
 - ICB: final cryomodule assembly
- Infrastructure:
 - Clean Rooms, Assembly Fixtures
 - Clean Vacuum, gas, water & Leak Check
- DESY Cryomodule "kit" assembled

ICB clean: Final Assembly fixtures installed

1st FNAL built Cryomodules

3.9 GHz Cryomodule Designed/built at FNAL for DESY

Not ILC funding but supports ILC effort

Global design effort

2009 DOE/NSF review

Americas

FNAL Cryomodule 2

•Goals

- -Build a cryomodule completely equipped with cavities processed in the U.S (ILC funds)
- –1st attempt to achieve ILC S1 goal of 31.5
 MV/m average gradient in a CM
- -Cavities equipped with INFN blade tuners
- •Eight cavities are good candidates for CM 2 –Average gradient in VTS is 36.5 MV/m
- Final cavities used will be selected based on upcoming process & test results
- •CAF(MP9) will be used to Dress cavities
- •1st dressed cavity this month
- •Goal: Cryomodule 2 assembled late 2009

Vendor	Cavity #	Gradient (MV/m)
ACCEL	6	37.8
	8	31.7
	11	40.0
	12	37.0
	13	44*
	14	44*
AES	2	32.8
JLab	J2	30.0
Average		37.2

* preliminary: based on last process/test result at Jefferson Lab

RF Unit Test Facility at NML

ILC: 3 CM, Klystron, Modulator, LLRF
Move A0 Injector to provide ILC like beam
New Tunnel Extension: design to allow 2nd RF unit, diagnostic beam lines, AARD facility
New Building: Cryoplant, Cryomodule Test Stands

Americas

Americas 1st Cryomodule moving to NML

Note: NML is funded <u>completely</u> with SRF funds Nevertheless, still an important facility for ILC R&D

RF Unit Test Facility at NML

Progress at NML

Global design effort

2009 DOE/NSF review

SRF Materials R&D

- Lots of activity !
- Understand/improve EP
- New better diagnostics
- Thermometry, optical insp
- Breakthroughs in understanding!
- Pits near EB welds → cavity quench
- Can reproduce pits in small Nb samples
- Goal = Prevention!
- But... also exploring repairs
- E.g. Laser remelting of pit

Partially funded by ILC funds

2009 DOE/NSF review

FY08-09 ILC Funding

- FY08 Omnibus Bill cut ILC funding to 25% of plan ¼ of the way through the FY
- SRF cut to 20% → All work infrastructure stopped Dec 07
- ILC/SRF workforce was dispersed (138 FTE)
- Work on ILC essentially stopped (2.5 FTE)
 - ~\$ 1 M unspent ILC M&S funds, cavity processing at JLAB and VTS at FNAL
- SRF contingency & FY08 supplemental kept JLab, NML, & cavity vendors alive
- In FY09: \$ 11.2 M of ILC funds to FNAL
 - Plus \$ 1.7 M to support the GDE office
 - This allowed a restart of the ILC R&D program
 - However CR Sep 08-Mar 09 → M&S limited to 60% of plan
 - Still have not received full allocation from OHEP (\$ 10. 3 M as of April)
- In FY09: \$ 22.8 M to build SRF infrastructure & perhaps ARRA funds
- Workforce has been restored to 75 FTE (but a struggle)
 - 23 FTE on ILC, 52 on SRF: Making up shortfalls with contract workers & guests
 - Expect 3.9 GHz effort to wind down this month (another 11 workers)
- FY08 omnibus/CR was very disruptive... cost us ~ 1 year in many places

FY08-09 ILC/SRF Labor

Has the Program Efficiently Recovered?

- No! The post-omnibus ILC program is now much smaller and envisioned to be flat vs expected large growth each yr, some delays not recoverable
- Not Yet:

Americas

- Had a cohesive workforce in place in Dec 08—scattered to other tasks
- FY08 funding cuts at FNAL resulted in a significant staff reduction > 100 FTE
- Change in Focus for US HEP program →a number of new near term projects now exist (e.g. NOvA, LBNE, Project X, Mu2e, etc)
- It has been difficult to get our workforce back (→ hiring contract workers)
- Issue: Restoration of funds is not enough
 - − FY08 Omnibus Bill → ILC credibility damaged; some people have not reengaged
 - Areas of overlap with possible near-term projects (SRF) much easier to sell than ILC global systems, value engineering, accelerator physics, etc.
- Nevertheless FNAL is reengaged on ILC & making progress
 - 3.9 Ghz & HINS efforts were invaluable in maintaining core of SRF workers through the "dark days" of FY08

- ILC community has good mechanisms for technically coordinating the R&D effort
- A variety of mechanisms are in place
 - International GDE meetings
 - ILC EC communicates its overall strategy for TDP
 - Labs envision their possible role
 - Good forums technical exchange of information
 - Also TTC, SRF, and PAC meetings
 - International Webex meetings
 - PM meetings (e.g. Main Linac, Yamamoto)
 - S0 Meetings (cavity and gradient) etc
 - National meetings of ART (Mike Harrison)
 - Executive council (all U.S. institutions, often by WEBEX)
 - Quarterly/Annual Technical and Financial Progress reports
 - Annual budget planning (work closely with Mike)
 - DOE Reviews (like this one) + AAP, HEPAP, AAC, etc

- Coordination mechanisms (continued)
 - Face-to-face meetings
 - FNAL ILC Director (me) & ART Director (Mike)
 - FNAL ILC Director & GDE Project Managers (e.g. Mark, Akira)
 - FNAL ILC Director & OHEP Program Manager (Gerry)
 - FNAL Directorate & GDE Directorate
 - Financial Coordination
 - ART Annual Financial Planning effort
 - OHEP communications to Fermilab budget office
 - FNAL Annual Laboratory Budget presentation to OHEP
- Technical Planning OK, Financial mechanisms less than perfect
 - Often money in FNAL Fin plan does not match ART plan
 - ART Director and OHEP maintain reserves → if full ILC work force is in place, substantial M&S is not available until late in fiscal year
 - ILC funding guidance from OHEP to FNAL CFO for lab annual budget plan often does not match numbers communicated by ART Director
 - All people well intended... process is just not very smooth

- For FNAL, the ILC R&D effort is part of a broader program of SRF development intended to allow FNAL first to capture the intensity frontier (with Project X) and later to recapture the energy frontier with ILC or a muon collider
- FNAL views SRF as an enabling technology (like SC magnets) likely to be used in all future HEP accelerators
- We have worked hard to maintain an integrated plan despite the funding turmoil of the past years
 - ARRA funds will provide the opportunity to substantially advance the program compared to our vision only a year ago
- ILC and SRF R&D provides broader benefits by developing high tech workforce at labs and in industry, and trains students via university collaborations

Collaborations (18 MOU's)

- ANL: EP development and cavity processing
- **Cornell**: Cavity processing & test, materials R&D
- DESY: 3.9 GHz, cryomodule kit, FLASH
- KEK: Cavity R&D, ATF II
- **MSU:** Cavity cost reduction, hydroform, TIG
- TJNL: EP cavity processing and test
- INFN: tuners, HTS, NML gun cathodes
- **Triumf: Vendor development**
- **SLAC**: RF power, klystrons, couplers
- CERN, DESY, KEK, INFN, etc: Type IV CM design
- India: CM design, cavities, infrastructure, etc
- China: Peking U, IHEP, cavity development
- UC,NW,NHMFL, Cornell, DESY, KEK,etc: Materials

Integrated ILC-Px SRF Plan

1.3 GHz Cryomodules																								
S. Calendar Year 2008			2009			2010			2011			2012				2013								
CM1 (Type III+)					1												f							
Assembly	in FY0	7	OMN	IBUS	delay		instal	I I																
Test				1					CM1 t	test@	NML													
CM2 (Type III+)																								
Cav Processing + VTS																								
Dressing & HTS																								
Assembly											insta	I												
Test			i	L							i	S1 De	emo@	NML								<u> </u>	\square	
CM3 (Type IV)	~	1	1								ļ											└───	\square	L
Design & Order Cav & CM Parts	OMN	<u>iibus</u>	DELA	<u>YY</u>	Des	Order	r Cav 8	CM p	arts													<u> </u>	Ļ	
Cav Processing + VIS	I			I	I												I – –					—		i
Dressing HTS														instal								<u> </u>	\vdash	
Assembly Toot														instai	54 D	00000	ALDAL					├──	\vdash	
CM4 (Type IV) APPA		+													310	emog						<u> </u>	\vdash	
Design & Order Cay & CM Parts		-		-				Orde	Cov 8	CMID	arte												\vdash	<u> </u>
Cay Processing + VTS	I		<u> </u>					orde		c Om p	anto											<u> </u>	\vdash	
Dressing HTS		1																						
Assembly														,			instal	I RF 1	unit			<u> </u>		
Test																		S1 D	emo +	with	beam			
CM5 (Type IV) ARRA (CM6 follow	s with	h sam	e patt	ern)				Orde	r Cav 8	CM p	arts											1		
Design & Order Cav & CM Parts																								
Cav Processing + VTS																								
Dressing HTS																								
Assembly																	instal	1						
NML ext and refrig building							Desig	in 👘	Cons	tructio	on													
NML Beam														Move	inject	tor		Bean	n Avai	lable				
10 MW RF unit test	OMN	IBUS	DELA	λY							I								S2 R	Funi	t test	<u> </u>		
Px B=0.8 CM (Project X. INDIA)		1	<u> </u>			i																		
Design & Order Cay & CM Parts			1			Desid	an		Order	Cav 8	k CM p	arts												
Cav Processing + VTS				1																				
Dressing HTS																								
Assembly																			Instal	1@C	TS			
Test																						test		
S1 Global (2 Cay)	I	+																				<u> </u>		
Cay Processing + VTS		-	-	-																			\vdash	<u> </u>
Dressing & HTS2	l –		<u> </u>								<u> </u>											<u> </u>	\vdash	i
bicoonig a fire																								
																						L		
New SRF Infrastructure C	Cons	struc	tion	(with	1 ARF	RA)																		
U.S. Calendar Year		20	80(20	09		2010				2011			2012				2013				
Nb Scan/Dress Cavity Upgrades					Desig	gn	Proc	ure 8	Insta	П														
Add Dx CM Apply Conspity						<u> </u>													Deel		Dreet	150 8	Install	
Add PX CIVI Ass y Capacity			-																Desi		FIOCI	ne &	instan	
VTS 2 & 3 Upgrade ARRA	OMN	IBUS	DEL/	λY	Desi	gn	Proc	ure			insta	II VTS	2	VTS3		Oper	ate V1 I	IS 1-3						
HTS 2 Upgrade (ARRA)													Desi	gn	Proc	ure 8	Insta	II	Opera	ate				
NML Beam line ARRA	OMN	IBUS	DEL/	Y		Desi	Proc	ure					insta	ii 👘				Bean	n Avai	lable				
NML Refrigerator ARRA	OMN	IBUS	DEL/	Y		Desi	gn	Proc	ure								insta	I	Opera	ate				
CM Test Stand									Desig	gn			Proc	ure (l	ndia)		insta	1 & R	F		Oper	ate		
ANL EP + upgrades ARRA	OMN	IBUS	DEL/	Y		ANL	EP	Oper	ate		"===	>"	Desi	gn	Proc	ure 8	Insta	II @A	NL &	JLAE	Opera	ate		

if: FY09 ILC Milestones for FNAL

nencas	Forecast	Actual
 1.7 Conventional Facilities 		
 Complete Water and HVAC VE 	Q4	Q3
 Main Linac Tunnel Alternative 	Q4	Q4
 Minimum machine CFS conceptual Design 	Q4	Q4
 1.10 Cavities and Cryomodules 		
 Complete & commission ANL/FNAL processing facility 	Q2	Q2/Q3
 1st dressed 1.3 GHz cavity tested 	Q3	Q3
 Start Testing Cryomodule 1 at NML 	Q3	Q4
 All Cryomodule 2 components available (except dressed cavities) 	Q4	Q2
 Complete 8 dressed cavities for CM2 	Q4	Q4 ?

Despite CR, doing well on milestones. Feed can for NML test of CM1 delayed, Test CCII first at NML to commission cryogenics system. 8 dressed cavities by Sept will be tough

- Fermilab has an active ILC R&D program
- FY08 omnibus cuts were disruptive, but we are recovering
- Despite Funding turmoil FNAL made considerable progress
- Significant contributions to global GDE program
 - Management, Accel Physics, machine design, global systems, cryogenic design, CFS, cost estimate, etc.
 - Major effort on SRF development
- Extensive SRF Infrastructure constructed and in operation, additional infrastructure under construction with SRF funds
 - Supports GDE S0, S1, S2 goals for ILC
 - Supports U.S. Industrialization of SRF technology
- Designing, Building, and Testing SRF components
 - Cavities, cryomodules, EP processing, SRF materials work, etc
- Integrated ILC/SRF effort at FNAL also supports Project X
- We have ambitious plans for FY09 and beyond