ILC Single Stage Bunch Compressor Studies

Andrea Latina (FNAL)

March 19, 2009

ILC LET Beam Dynamics - Phone Meeting

- Summary of BC1S Design and Status
- Beam Dynamics Case: impact of misalignments, coupler kicks
- Emittance Preservation Techniques: BBA, girder pitch, crab cavities correction
- Conclusions and Future Plans

BC1S - Optics and General Description

• Based on the original design at 5 GeV by PT in April 2005:

http://www-project.slac.stanford.edu/ilc/acceldev/LET/BC/OneStageBC.html

- six cryomodules for RF acceleration
- 6-cells Raubenheimer-type wiggler: a single bend magnet between quads in a 6-cells FODO lattice
- \Rightarrow NEW sections added:
 - (1) beam diagnostics and extraction, adapted from BC2
 - (2) booster linac from 5 to 15 GeV

Design Characteristics

• The beam properties at injection are:

```
Charge 2e10 (3.2 nC)
Energy 5 GeV
Energy spread 0.15% (actually 0.13% from Damping Ring)
Bunch Length 6 mm
```

• Properties of the bunch compressor are:

- \Rightarrow Desired final bunch length : 0.3 mm
- \Rightarrow Desired energy spread at ML entrance (baseline): 1.07%

Design Beam Profile and Optimization

- Nominal beam parameters at exit
 - blength = 266 μ m (300 μ m)
 - energy = 4.3797 GeV
 - espread = 4.13 %
- \Rightarrow espread @ 15 GeV $\simeq 1.2\%$ (1.07%)

- Optimization to reach nominal values at ML entrance
 - simplex on (1) **rf gradient**, (2) **rf phase**, (3) **wiggler** R_{56}
 - minimization of the following merit function

$$M = \left(1 - \frac{\Delta E/E}{1.07\%}\right)^2 + \left(1 - \frac{\sigma_z}{300\mu \text{m}}\right)^2 + 10 \cdot \text{corrcoeff}(\{E\}, \{z\})^2$$

 \Rightarrow convergence is $good \rightarrow$ we played with the coefficient of correlation

Phase Space Before and After Optimization

- Before optimization
 - Bunch length = 265 μ m
 - energy spread = 4.13 %
 - energy spread @ 15 GeV = 1.18 %

- After optimization
 - Bunch length = 300 μ m
 - energy spread = 3.54 %
 - energy spread @ 15 GeV = 1.07 %

\Rightarrow After

Beam Dynamics Study Cases

- Effect of **element misalignments** and correction
 - "COLD" model

 $\begin{array}{lll} \sigma_{\rm quad} & = & 300 \; \mu {\rm m} \\ \sigma_{\rm quad \; roll} & = & 300 \; \mu {\rm rad} \\ \sigma_{\rm cav} & = & 300 \; \mu {\rm m} \\ \sigma_{\rm cav \; pitch} & = & 300 \; \mu {\rm rad} \\ \sigma_{\rm sbend \; angle} & = & 300 \; \mu {\rm rad} \\ \sigma_{\rm bpm} & = & 300 \; \mu {\rm m} \end{array}$

quadrupole position error quadrupole roll error cavity position error cavity pitch error sbend angle error bpm position error

- Bpm resolution error:
- $\sigma_{\mathrm{bpmres}} = 1 \ \mu \mathrm{m}$
- ⇒ Two cases have been studied:
 - all misalignments applied at the same time
 - each individual contribution at once
- Effect of couplers RF-Kick and Wakes
 - ⇒ impact and cure using
 - beam-based alignment
 - girder pitch optimization
 - crab cavity calibration

Emittance Preservation Procedure

Beam-Based Alignment

- 1-to-1 Correction
- Dispersion Free Steering
 - a $\pm 5^o$ phase offset is applied to the RF cavities of the BC1S in order to generate the energy difference for the DFS's test beams
 - the test beams are synchronized to the BOOSTER's RF phase at the BOOSTER entrance
- in progress Girder pitch optimization / Crab cavity compensation
- Dispersion bumps optimization
 - two dispersion bumps: one at the entrance and the other at the exit of BC1S
 - as there are no skew quadrupoles in the lattice (yet), we used two ideal bumps

$$y_{i(\text{new})} = y_{i(\text{old})} + \underline{\eta} \frac{E_i - E_0}{E_0}$$

- Reminder: Dispersion Free Steering

$$\chi^2 = \sum_{i=1}^n y_{0,i}^2 + \sum_{j=1}^m \sum_{i=1}^n \omega_{1,j} (y_{j,i} - y_{0,i})^2$$

 \Rightarrow we make a scan of the weight $\omega_{1,j}$ to find the optimum

Girder Pitch Optimization

- ullet Compensate the emittance growth by rotating the girders in the plane $yz \to {\sf tilted}$ cavities induce a transverse kick that is used to correct
- We deal with two cryomodule designs
 - 1. Old, like in the current design of BC1S: quadrupole at the end

2. New, like in the design of BC1+BC2: quadrupole in the middle

- ⇒ Rotation must happen **around** the quadrupole
- ⇒ It is a non-local compensation. Emittance is measured and minimized at the end of the line.

Vertical Emittance as a Function of the Girder Pitch

⇒ Example: final vertical emittance in BC1S for a perfectly aligned line, as a function of the 1st girder rotation

 \Rightarrow it might work..

Crab Cavity Optimization

- We inserted a thin Crab Cavity at the end of each cryomodule
 - 6 crab cavities in total
- Each Crab Cavity provides two knobs:
 - voltage
 - phase
- It seems a natural solution → RF-Kicks are simulated using a Crab Cavity
- ⇒ It is a non-local compensation. Emittance is measured and minimized at the end of the line.
 - \Rightarrow 12 knobs to optimize
 - The effect might be equivalent to the previous method but
 - notice: this is only a feasibility test!
 - an actual implementation of this method would require the modification of the entire RF section of the BC1S
 - ⇒ because each cryomodule should host a crab cavity at the cost of one accelerating cavity and we would need an additional cryomodule

Simulation Setup and Results

• Beam properties at injection are:

- Charge: 2e10 (3.2 nC)

- Energy: 5 GeV

- Energy spread: 0.15%

- Bunch Length: 6 mm

- Beam model: 50000 single-particles

• Tracking Setup

- ⇒ short-range wakefields in the cavities are taken into account
- \Rightarrow bending magnets are simulated with 100 thin lenses (because of the strong non linearity)
- ⇒ incoherent synchrotron radiation is turned on
- ⇒ full 6d tracking in whole bunch compressor

Simulation Procedure

- ⇒ misalignments applied to BC1S+BOOSTER
- \Rightarrow scan of the DFS's weight ω
- \Rightarrow 40 machines (i.e. random seeds) have been simulated for each case

Emittance Growth due to Misalignments

ullet Final vertical emittance growth as a function of ω

- \Rightarrow Minimal vertical emittance growth, for $\omega=$ 512, $\Delta\epsilon=$ 3.37 nm
- \Rightarrow Large contributions from BPM misalignment and BPM resolution

Emittance Growth due to Misalignments, 100 machines

 \bullet Final vertical emittance growth as a function of ω

- \Rightarrow Minimal vertical emittance growth, for ω =256, $\Delta \epsilon = 6.5$ nm
- \Rightarrow Large contributions from BPM misalignment and BPM resolution

Vertical Emittance Growth due to Cavity Pitch

• Emittance Growth along the line, average of 40 machines

 \Rightarrow In this case, final vertical emittance growth is $\boxed{1 \text{ nm}}$

Summary Table of Vertical Emittance Growths

- For w=512 and each individual misalignment

Misalignment	$\Delta \epsilon_y$
bpm position	0.74 nm
cavity position	0.24 nm
quadrupole position	0.24 nm
sbend position	0.23 nm
cavity pitch	0.98 nm
bpm resolution	1.60 nm
TOTAL	3.37 nm

[⇒] Actually, the SUM of all contributions would be 4.03 nm, not 3.37 nm, but this is an OVERESTIMATION, since it does not include the coupling between all effects

Coupler Kicks: RF-Kick and Wakefields

- We consider the impact of coupler wakes and RF-kick in BC1S
- and its correction using 1-to-1 steering and dispersion bumps

- \Rightarrow Final vertical emittance growth is 2.2 nm
- \Rightarrow We want to do better \Rightarrow Girder Pitch Optimization

Girder Pitch Optimization Result

• All 6 girders are moved at the same time in order to minimize the final emittance

• Angles of the girders (and vertical displacements of the two ends) are the following

girder	1	2	3	4	5	6
angle [μ rad]	18.0499	8.8699	25.6944	-2.7834	-29.5327	-1.6109
$\Delta y \; [\mu \mathrm{m}]$	220.209	108.213	313.472	-33.958	-360.299	-19.653

 \Rightarrow Final vertical emittance growth is $\boxed{0.4 \text{ nm}}$

CrabCavity Correction Result

- One Crab Cavity is put at the end of each cryomodule
- 1-to-1 correction + Crab Cavity correction (simplex tuning voltage and phase) + dispersion bumps

 \Rightarrow Final vertical emittance growth is $\boxed{0.47 \text{ nm}}$

CrabCavity Correction Result

• Voltage and phase of the crab cavities after the optimization are the following

crab cavity $[\#]$	voltage [kV]	phase [deg]
1	-472.5025	0.162373
2	-658.0585	-0.927942
3	240.7833	-0.975989
4	-3.3140	0.032526
5	4.1073	0.773033
6	-10.5209	1.842551

Extra: Girder Pitch Optimization Applied to BC1+BC2

- Girder Pitch Optimization has been applied to BC1+BC2
- optimization with 48 cryomodules, rotation around the center of the cryomodule

 \Rightarrow Without optimization the final vertical emittance growth is 5.5 and 2.5 nm, with optimization 0.58 nm

Summary Table of Vertical Emittance Growths

- For RF-Kick and Wakefields induced by the Couplers

 \Rightarrow BC1S

Correction algorithm	$\Delta\epsilon_y$ RF-Kick	$\Delta\epsilon_y$ Wakes	$\Delta \epsilon_y$ Total
1-to-1 correction + bumps	1.9 nm	1.4 nm	2.2 nm
crab cavity correction $+$ bumps	-	_	0.47 nm
girder pitch optimization $+$ bumps	-	-	0.4 nm

\Rightarrow BC1+BC2

Correction algorithm	$\Delta\epsilon_y$ RF-Kick	$\Delta\epsilon_y$ Wakes	$\Delta\epsilon_y$ Total
1-to-1 correction / dispersion free	1.59 nm	2.8 nm	5.5 nm
$1 ext{-to-}1$ correction $+$ skew quadrupoles	-	_	2.5 nm
girder pitch optimization / dispersion free	-	_	0.58 nm

Conclusions and Work Plan

- Emittance growth due to <u>misalignments</u> seems to be dominated by BPM misalignments and BPM resolution errors, further studies are required
- Girder Pitch optimization is very effective to counteract <u>coupler kicks</u>, both for BC1S and BC1+BC2
- In BC1S, Crab Cavity Option seems to be similarly effective, but it would require a slight redesign of the RF stage
- To Do List:
 - ⇒ Replace the current Wiggler with the schema presented by *Seletskiy, Tenenbaum* at PAC 2007
 - they have equivalent cell length (\sim 24 meters) but,
 - at cost of more elements, the new schema allows more flexibility:
 - skew quadrupoles, coupling correction, ...
 - ⇒ Replace the crymodules with modern ones
- ⇒ Detailed Study of Girder Pitch Optimization to cure misalignments