Longitudinal shower profile
 - CERN electron runs 2006 -

Valeria Bartsch
University College London

Sampling fraction

- Allow sampling fraction $f_{\text {samp }}$ to vary layer by layer
- Take into account variation of energy deposition if energy of electrons in the shower is so low that they do not dominantly do bremsstrahlung
- Estimate sampling fraction $f_{\text {samp }}$ with MC simulation

$$
\mathrm{F}_{\text {samp }}=\mathrm{E}_{\text {dep active }} / \mathrm{E}_{\text {dep total }}
$$

- For $E_{\text {dep total }}$ only W and G 10 used for $30 \mathrm{GeV} 96 \%$ of $\mathrm{E}_{\text {dep total }}$ deposited in W, Si and G10
- Needed to write new MOKKA driver for this with the help of Gabriel Musat
- Resulting files large (50GB for 1000 events) due to structure of LCIO

Sampling fraction

- One can see odd/even layer difference
- 3 stack with differing W thickness
- However ratio between the stack is: 1/1.8/2.6 instead of $1 / 2 / 3$ (also supported when carefully adding all radiation lengths

Sampling fraction

- New sampling fraction also takes care of odd/even layer difference
- Changes between odd/even layer and this method:
- Shower max
- Leakage Energy
- Small change of the χ^{2} of the fits to the longitudinal profile

Linearity

Fit:
$\mathrm{E}_{\text {beam }}=$ ADC_counts * $(2.97+-0.03)^{*} 10^{-4}$
\Rightarrow need new mip_conv for this method

However looking closer....

(plots from Daniel Jeans)

New sampling fraction
residualValeria

Odd/even layer correction ssidualRealistic

\Rightarrow Residual are higher for 15 GeV (no correct sampling fraction for this energy) and 40 GeV

However looking closer....

(plots from Daniel Jeans)

New sampling fraction

Odd/even layer correction olutionRealistic

\Rightarrow Effect on resolution not understood yet

Longitudinal shower profile

new G10 density solved disagreement between MC and data

Parameters to extract from profile

- Fitted with:

$$
f(X 0)=\text { Const. (X0- } \beta)^{\alpha} \exp (-0.5(X 0-\beta))
$$

- Interesting parameters to extract:
- leakage energy
- shower max
- material in front of calo β

Parameters to extract from profile

 Side remark

For data of all energies this layer is always high (checked that this is not true for MC) \Rightarrow Could come from noise

sone statistics

- Some of the parameters to extract from the fit are not identical with the fit parameters:
- $E_{\text {leakage }}=$ integral from $X 0=26$-infinity
- Shower maximum = maximum of the distribution
- Errors on the MINUIT fit parameters not equal to errors on these parameters
\Rightarrow Used a different method which splits the sample into subsamples to extract errors of the leakage energy and the shower maximum
\Rightarrow first need to show that this method works

Some statistics

- Get RMS on distribution of each fit parameter (later of the integral..)
- Change subsample size

- Plot against subsample size

Comparison with MINUIT errors

Fit parameter	$\boldsymbol{\sigma}$	$\sigma_{\text {MINUIT }}$
α	7.010^{-4}	6.710^{-4}
$\boldsymbol{\beta}$	2.9010^{-4}	2.8910^{-4}
γ	5.310^{-5}	5.110^{-5}

- Statistical error can be extracted like this
- Systematics: $\sigma_{\text {sys }+ \text { stat }}=$ const. $\sigma_{\text {stat }}$

SyStennatic errors...

- Effect from error on calibration:
- 0.4\% from statistical error
- 0.5\% from systematic for 99.1% of all channels See Anne Marie's paper
- These errors both add up to give the systematic error which is not correlated:
$\Rightarrow \sigma_{\text {sys calib }}=0.9 \% / \sqrt{ }$ no of cells

More on systematic errors

- Statistical error on sampling fraction:
-Can be up to 4\% for first layers due to small number of hits
\Rightarrow create more MC for sampling fraction -Usually less than 0.5\%
- Small effect from
-Error on beam energy
e.g. 450 MeV largest uncertainty for 45 GeV
-Rotation of the detector
-Error on collimator settings

Systematic error

- $\sigma_{\text {sys }+ \text { stat }}=$ const. $\sigma_{\text {stat }}$
- Const. = 5 on average, depending on run
- Const. the same for all fit parameter
\Rightarrow Add sys errors in following plots

χ^{2} on fits

- Only after determining the errors correctly the χ^{2} of the fits makes sense
- Comparison the χ^{2} of data to MC:
e.g. run 300676: 19/NDOF
- Comparison the χ^{2} of fit to the data:
e.g. run 300195: 8/NDOF
\Rightarrow Close however χ^{2} for fit still a bit high
\Rightarrow I think I need to take noise into account (correction in MC for noise is fine, but fits can not get good χ^{2} if there is too much noise)

Extraction of final values: shower maximum

Extraction of final values: leakage energy

Extraction of final values: material in front of caln R

Extraction of β difficult:

- depending on estimate on error
- correlated with γ (here γ is set to 0.5)

