Geant4: What's new, improved, or under study in hadronics

J. Apostolakis

Overview

- Recent improvements in hadronic processes
 in Release 9.2 (Dec 2008) and its patch 1
- Known issues, challenges
- Validation, improvements underway
- Physics lists
 - Candidates for validation
 - In early development

Improvements in 2008

Improvements in hadronic processes in Release 9.2 (Dec 2008) and its patch 1 Selected from G. Cosmo's talk at <u>March 9th</u> Geant4 <u>Technical Forum</u> meeting

Hadronics: the Improved and New

Improved:

Corrections & tuning in pre-compound and de-excitation code
 affecting results for low-energy secondaries in Binary cascade

- □ Revised string fragmentation and tuned parameters in **FTF** model
 - $\ensuremath{\boldsymbol{\Xi}}$ For Pi+P and pion-nucleon interactions
 - ☐ Implemented quasi-elastic hadron-nucleus scattering and formation time
- □ Enabled/added barrier penetration for the Coulomb barrier in Bertini cascade

New:

- □ **INCL** cascade and **ABLA** evaporation model officially released
 - Can be used for incident p, n, d, t, 3He, alpha and pions from 200
 MeV up to 3 GeV, on nuclei ranging from carbon to uranium
- □ Beta release of new quantum molecular dynamics (QMD) model
 - $\ensuremath{\,\boxtimes}$ For nucleus-nucleus collisions; valid from 50 $\,\ensuremath{\,{\rm MeV}}$ to 5 $\,\ensuremath{\,{\rm GeV}}$

Hadronic processes: major fixes

- □ Bug fix in the final state multiplicity sampling in Bertini cascade
 □ Fixes observed problem of quasi-elastic peak in energy spectra
- ◻ Corrections to the **multi-fragmentation** model to ensure it conforms with the original SMM model (from its authors)
- ◻ Improved energy and angular distributions for both scattered neutron and recoil targets in the **hp_neutron** model
- □ Code review and performance improvements to Bertini code
 □ Measured ~25% CPU time boost when using QGSP_BERT for 50 Gev
 pi-
- µ Technical
 - $\ensuremath{^{\ensuremath{\boldsymbol{\Xi}}}}$ Rationalised usage of the nuclear mass tables

Latest Hadronic fixes – 9.2.p01

 ☐ Probability of emission in pre-compound

- ⊐ Implementation of the emission probability in de_excitation model
- ¤ Added smearing of Coulomb barriers for d, t, he3 and alpha
- $\ensuremath{\boldsymbol{\Xi}}$ Tuned absorption coefficient in Bertini cascade
- ☐ Technical
 - Activate proper deletion of processes, models and cross-sections at job closure

Known issues; challenges

- 'Discontinuity' in energy deposition in transition between Bertini and LEP QGSP_BERT
 - Reported by CMS
- Deficiencies of LEP model
 - Conservation laws
 - Spectra
- Gap between 'applicability' of cascades and string models (general issue for MCs)
 - Bertini validated up to ~5 GeV
 - Binary limited to ~2.5 GeV (protons), ~1.5 GeV (pions)
 - QGS validated from 13/15 GeV
 - FTF potential to fill the gap (under validation 3+ GeV)

Background: QGSP_BERT

- Elastic n/p from M. Kosov
- Uses BERTini up to about 9.7 GeV for p/n/pi
- Uses LEP for most interactions 9.7<E<18 GeV
 And for hyperons
- QGS for most interactions E> 18 GeV
 - Links with Precompound for de-Excitation
 - Underestimates target framentation
- Neutron capture from LEP model
 - Significant limitations
 - alternative HP can be used via QGSP_BERT_HP)

Underway

- Expansion of validation
 - Status for 5-20 GeV presented at CHEP 2009
 - Additional comparisons being prepared & sought
 - Future 25-70+ GeV
- Linking of cascade to string model(s)
 - To model <u>re-interaction</u> of low-energy products
- Study of transitions between models
 - Multiplicity, energy moments of products
- Trial physics lists
 - FTF in place of LEP and QGS
 - Others without LEP models

-4

-2

0

-6

AGABABYAN 91 ZP C50, 361

6

4

 $\mathbf{2}$

Transitions between models

- Transitions in existing physics lists
 - QGSP_BERT: Between Bertini, LEP and QGS/P
 - Bertini E< 9.9; LEP: 9.5<E<25; QGS/Preco: E>12.5
- Studying
 - Energy in π^0 , π^+/π^- , p, n, light ions
 - Multiplicities
 - Spectra (to do)
- Future
 - Identifying best criteria for transitioning between models

Potential production physics lists

- Old: LHEP, QGSP
 - QGSP: uses QGS/Preco phased in over interval 12-25 GeV)
 - Alternative: QGSC (CHIPS as de-excitation, QGS 8-25)
- 'Production' at LHC: QGSP_BERT
- Emerging: Featuring FTF in place of LEP and QGS
 - FTF_BERT: transition from BERTinit to FTF at 4-5 GeV
 - QGS not used at all
- New: Linking of cascade to string model(s)
 - To model re-interaction of low-energy products
 - Improve target fragmentation
 - FTF_BIC and QGS_BIC

Development / Trial physics lists

- Others without LEP models

 QBBC: Binary for p/n, BERTini for pions
- Trial: temporary developments

- QGSP_NOLEPx

•

OTHER / BACKUP

New Features – physics - 2

- I Enabled by default Cubic Spline interpolation of dedx and cross section tables
- $\ensuremath{^{\ensuremath{\boldsymbol{\Xi}}}}$ New multiple-scattering process and model
 - □ G4eMultipleScattering, specialized for simulation of e+ and e-
 - **G4WentzelVIModel** for multiple scattering of muons and hadrons
- New Bremsstrahlung model, G4eBremsstrahlungRelModel, including advanced description of LPM effect
- - G4EmSaturation for sampling of Birks saturation; G4ElectronIonPair based on the ICRU'31 report for sampling electron/ion pairs in sensitive detectors; G4EmConfigurator for configuration of models in physics lists
- $\ensuremath{\boldsymbol{\Xi}}$ Initialization of $\ensuremath{\boldsymbol{\mathtt{SubType}}}$ added for all processes

Major fixes – physics - 1

¤ Electromagnetic processes

 $\ensuremath{\ensuremath{^{\ensuremath{^{\square}}}}$ Improved implementation of the <code>G4LogLogInterpolation</code> class

lpha Providing visible CPU improvement in low-energy physics processes

- $\fill \fill \fil$
 - □ Providing wider shower (about 0.5% measured for the CMS calorimeter)
- □ Fixed cases of string comparison when computing transport crosssections in MSC models, compare masses instead
- □ Speedup run-time computations in e-Coulomb scattering model
 □ Using pre-computed nuclear form-factors per element
- Added scintillation with Birk's law and modified sampling of the Cerenkov photon origins

Improved in 2008: De-excitation

- De-excitation reviewed & corrected
 - Many components improved
 - Pre-compound model (JM Quesada)
 - Evaporation (A Howard, JM Q)
 - Multi-fragmentation (donated by SMM authors)