

Resolution & Linearity of the Si-W ECal for 2007

Report of an internship Julia Duras

CALICE Analysis meeting at DESY HH, 30th March 2009

Content

- Test beam 2007 at CERN
- E_{rec} calculation
- Cuts
- Out taken run
- Linearity 2007
- Resolution 2007
- Summery

1. Beam test 2007 at CERN

1. Beam test 2007 at CERN

Jun until August 2007, at H6 beam line at CERN

Taken data:

- just e- runs
- centered beam
- just 6 wafer per layer

2. E_{rec} Calculation

2. E_{rec} Calculation

Reconstructed energy:

$$E_{rec} = 1\sum_{i=0}^{9} (1+\eta)E_i + 2\sum_{i=10}^{19} (1+\eta)E_i + 3\sum_{i=20}^{29} (1+\eta)E_i$$

Width of the tungsten thickness

 $\eta = \begin{cases} 0.0 & \text{for odd layers} \\ 0.072 & \text{for even layers} \end{cases}$

Difference between odd and even layers

figures by M.F.Giannelli, TIPP09

3. Cuts

3. Cuts

X coordinate

Y coordinate

Just to remind you:

Energy:

$$100 < \frac{E_{rec}[MiP]}{E_{beam}[GeV]} < 375$$

Beam halo

area of the well defined beam

statistic of the gaps:

Gaussian Fit of the inter-wafer gaps

	Right X-gap	Upper Y-gap	
μ	35.5mm 30.2mm		
σ	5.1mm	4.4mm	
Deposit E	12.3%	13.3 %	

$$\frac{\text{errors:}}{\delta \sigma} < 0.03\%$$
$$\delta \sigma < 0.3\%$$
$$\delta E_{dep} < 2\%$$

- Energy:

$$100 < \frac{E_{rec}[MiP]}{E_{beam}[GeV]} < 375$$

- Beam halo

area of the well defined beam

- Gaps:

mean position of the event is $4*\sigma$ far a way from the gap while each gap is defined run by run

Energy tail:

$$100 < \frac{E_{rec}[MiP]}{E_{beam}[GeV]} < 375$$

Beam halo

area of the well defined beam

Gaps:

mean position of the event is $4*\sigma$ far a way from the gap while each gap is defined run by run

Shower position: mean position is more then 32mm far a way from the ECal borders

Energy tail:

$$100 < \frac{E_{rec}[MiP]}{E_{beam}[GeV]} < 375$$

Beam halo

area of the well defined beam

Gaps:

mean position of the event is $4*\sigma$ far a way from the gap while each gap is defined run by run

Shower position: mean position is more then 32mm far a way from the ECal borders

Also, if available: Cherenkov Trigger gives just electrons

4. Out taken runs

4. Out taken runs

For the following 5 runs similar

4. Out taken runs

For the following 5 runs similar

Took them out of the calculation

5. Linearity 2007

5. Linearity 2007

Fitted histograms \underline{E}_{rec}^{f} in 3 steps:

- [minEnergy ; maxEnergy] define

run by run \rightarrow get σ and μ

- [μ-2σ ; μ+3σ]
 → get σ and μ
- [μ-σ ; μ+2σ]

5. Linearity 2007

Statistics of the fits:

distribution of the entries per run entrie 30000 6GeV 10GeV 30GeV 50GeV 15GeV 20GeV 8GeV 12GeV 18G¢V 25GeV 40GeV ັດ 25000 20000 15000 10000 5000 0^L 5 10 15 20 25 30 run •Just one run for 18GeV and 50GeV with just a view entries •Also less entries for 40GeV • χ^2 is ok \rightarrow fits are ok

Calculation of the errors:

Uncertainty of the beam mean energy calculated by:

Given by CERN

No energy momentum spread available for 2007!

First look at the linearity:

Strange run 330428 @ 50GeV

But everything seems fine

 \rightarrow TOOK IT OUT

Linearity 2007

6. Resolution 2007

Conversion MIPs to GeV:

\rightarrow conversion of the reconstructed energy

$$E_{rec}[GeV] = \frac{E_{rec}[MIP] - p_0}{p_1}$$

Resolution 2007

Comparison of the weights:

$$E_{rec} = 1\sum_{i=0}^{9} (1+\eta)E_i + 2\sum_{i=10}^{19} (1+\eta)E_i + 3\sum_{i=20}^{29} (1+\eta)E_i$$
Paper for 2006: 1.0, 2.0, 3.0
V. Bartsch: 1.0, 1.83, 2.7
CALICE analysis Note 001: 1.1, 2.0, 2.7

7. Summary

7. Summary

	Data 2006	Data 2007	Data per run
a [MIPs]	96.25 ± 11.13	-77.14 ± 5.86	
β [MIPs/GeV]	266.25 ± 0.48	294.4 ± 0.5	
Chi2 / ndf	17.64 / 32	13.9 / 29	Linearity
Residuals		< 1.5 %	
Constant term [%]	1.05 ± 0.07	0.81 ± 0.15	
Statistic term [%/GeV]	16.59 ± 0.14	16.78 ± 0.15	\sim Resolution
Chi2 / ndf	19.65 / 32	44.32 / 29	
Residuals		< 0.5 %]

J.Duras, LLR

paper 2006, CALICE group

Additional slides

Strange beam?

Strange beam?

Strange beam?

eLogbook:

"... dropped because beam is too board in the x direction. put collimators in x direction more closer. ... "

<u>08.07.2007</u> 19:32

-> take them out of calculations

Official data 2006:

Table 1: Gaussian parametrisation of the inter-wafer gaps.

J. Duras, LLR From: CALICE group, "Response of the CALICE Si-W Electromagnetic Calorimeter Physics Prototype to Electrons" 37