CALICE Analysis meeting, DESY 30 March 2009

Geant4 Simulation for LHC experiments

J.Apostolakis, A.Ribon

CERN PH/SFT

Introduction

- We report on the validation of Geant4 simulations for LHC experiments, based on test-beam data
- We focus here on calorimeter observables that are sensitive to hadronic physics
- □ These are the LHC calorimeter test-beam set-ups that we refer to:
 - ATLAS Tile : Fe-Sci
 - □ ATLAS HEC : Cu-LAr
 - □ ATLAS combined barrel : Pb-LAr (EM) + Fe-Sci (HAD)
 - CMS combined : PbWO4 crystals (EM) + Brass-Sci (HAD)

30-Mar-2009 CALICE Analysis meeting

Geant4 Simulation for LHC experiments

Energy Response

Pion energy response in ATLAS stand-alone test-beams

Bertini cascade increases response for Tile and HEC by 4-5%. In Tile and HEC response ~2% too high with QGSP_BERT.

Pion energy response in ATLAS barrel combined test-beam

30-Mar-2009 CALICE Analysis meeting

Geant4 Simulation for LHC experiments

Pions and protons energy response in CMS combined test-beam

Agreement between data and simulation on energy response is within systematic uncertainty

30-Mar-2009 CALICE Analysis meeting

Geant4 Simulation for LHC experiments

Energy response vs. beam energy

Problem of matching models:

ATLAS Tile

Energy Resolution

Pion resolution in ATLAS stand-alone test-beams

Bertini cascade makes resolution better: in Tile: better agreement with data (±10 %). in HEC: MC resolution too good by -10%.

Pion resolution in ATLAS barrel combined test-beam

30-Mar-2009 CALICE Analysis meeting

Pions and protons energy resolution in CMS combined test-beam

Resolution is too good in Monte Carlo

30-Mar-2009 CALICE Analysis meeting

Longitudinal shower shape

Pion longitudinal shower profile in stand-alone ATLAS TileCal test-beam at 90°

Proton longitudinal shower profile in stand-alone ATLAS TileCal test-beam at 90°

Pion longitudinal shower profile in stand-alone ATLAS HEC test-beam

Four HEC longitudinal layers: 8/16/8/8 LAr gaps, $1.5/2.9/3.0/2.8 \lambda$ $F = \langle E_{LAYER} \rangle / E_{SUM}$, where $E_{SUM} = \Sigma \langle E_{LAYER} \rangle$

QGSP starts/ends too early, QGSP_BERT with ±10 % (still a bit too early) Problem at 10 GeV.

30-Mar-2009 CALICE Analysis meeting

Geant4 Simulation for LHC experiments

G490

Pion longitudinal shower profile in ATLAS barrel combined test-beam

QGSP_BERT describes data within ±10%.

30-Mar-2009 CALICE Analysis meeting

Pion longitudinal shower profile in CMS combined test-beam

□ Similar trend at all energies

Lateral shower shape

Pion lateral spread in stand-alone ATLAS TileCal test-beam @90°

Bertini cascade makes shower wider, which is in better agreement with data, but data are still a bit wider.

Summary and Outlook

- The LHC experiments have carried out extensive tests of the Geant4 physics models and validated them with test beam data.
- ATLAS and CMS have chosen QGSP_BERT(_EMV) as the default Physics List. Fritiof-based Physics Lists, FTF_BIC and FTFP_BERT show interesting features.

□ There are some remaining issues in hadronic physics

- 1) Discontinuity in energy response at the model boundaries
- 2) Proton longitudinal shower profiles are shorter than data in QGS-based Physics Lists (diffraction)
- Lateral shower profiles are a bit narrower than data (not an issue for LHC experiments, but for ILC it could be important....)