
 1

DIF Command Interface Version 1.10 (24.2.09)

The DIF developers

0 Introduction
A simplified block diagram of the communication between DIF and LDA, or as it is proposed to a PC
via USB bus, is shown in Fig. 1. Only the interface between LDA and DIF is shown, the remaining
functionalities are combined on DIF- and LDA-side in the blocks “Control Unit”. The USB-DIF link
is generally for debugging, but as the more simple interface, it will be the first system realization stage
as well. Data transfer between LDA and the slabs (front-end ASICs) might happen in two steps (by
two commands from the LDA), for example the slow-control data: 1. Load slow-control data from
LDA to DIF (data is stored in DIF memory). 2. Transfer data from the memory to the slabs (ASICs).

0.1 LDA-DIF interface
The only connection between LDA and DIF is realized with a 19-pin HDMI cable. Commands are in
general 8b/10b-channel coded, while the coding and decoding blocks are fully transparent for the
remaining logic/electronics. The DIF is operated with the clock from the LDA: no PLL (DCM) on the
DIF, by which a fully synchronous operation of all the DIFs that are connected to one LDA is
guaranteed. Clock speed (default): 100MHz (but also possible: 40-120MHz). Fast Commands from the
LDA to the DIF like a trigger are transported without channel coding, as well as fast commands from
DIF to the LDA like the signal “RAMFull”.

0.2 PC (USB) to DIF interface
The USB interface should “emulate” the LDA-DIF interface as much as possible in order to allow an
easy switching to the LDA-DIF setup. The USB-interface does not use the 8b/10b channel
coders/decoders. The DIF clock may be generated from the USB side or by a local oscillator. In the
USB-setup, PLLs (DCMs) within the DIF FPGA are allowed. On the PC, Labview is a possible
operating system, but not mandatory.

Figure 1: Interface of the DIF FPGA to the LDA, or a PC via USB

 2

1 Transfer between LDA and DIF
The data transfer between LDA and DIF is 8b/10b channel coded. The 8b/10b coding is realized by a
5b/6b and a 3b/4b coder.
Two types of data transfer “frames” are defined between LDA and DIF [1, 2]:

1.1 (Fast-) Command Frames
The Fast-Commands are used for link-synchronization and for timing critical DIF commands
(especially broadcasts to all DIFs) only.
A command frame is 16-bit long:

15 8 7 0

komma character (K) command word (D)

The komma character K and the command word D are referenced to by KX.Y and DX.Y, respectively:
X has a 5-bit resolution, Y has a 3-bit resolution. E.g. K28.1 is the 8-bit sequence 11100 001.

1.2 Block Transfers
A block transfer is used to transmit configuration-, result- or status information data between LDA and
DIF as well as timing-uncritical commands. The length is not fixed, although only an even number of
16-bit words is allowed (see K23.7 in Table 1 and /EPD/ in Table 2). The block:

packettype pktID type_modifier
(command def.)

data_length data CRC

16 bit 16 bit 16 bit 16 bit data_length
*16 bit

16 bit

packettype: define block to be:

packettype (16-bit hex) identifies packet to be remark
0x0001 block data
0x0002 generic command
0x0010 command ECAL only
0x0020 command DHCAL only
0x0040 command AHCAL only
0x0080 Command is for DIF-DIF Link
0x0100 data is firmware for FPGA

0x1000 to 0xF000 DCC identifier only the upper 4 bits!!
 Each packet identifier (second column) is assigned to a certain bit in the 16-bit packettype (first column).

The bits can be combined: e.g. packettype=0x0012 means “generic command for ECAL only”.

pktID: numeration of sent blocks, used to identify block losses.

type_modifier: command definition. In practise, this is the address of the respective command register inside the
DIF. See table 8.

data_length: Number of 16-bit vectors sent in the “data”-section of the block.

data: 16-bit data vectors, e.g. slow-control data for the ASICs, temperatures, voltages, currents.

CRC: cyclic redundancy check (look for transmission errors).

 3

1.3 Komma Characters (see section 1.1) and special sequences [1]
The 8b/10b channel coding allows for channel synchronization and maintenance the so called komma
characters (K):

Komma Character K Task (Meaning)
K28.0 Signals the next symbol (command word) is a SYNCCMD.
K28.1
K28.2
K28.3 Signals the next symbol (command word) is a COMMAND.
K28.4 Signals in the next symbol (command word) is for DIF-DIF link
K28.5 reserved for link synchronization
K28.6
K28.7 reserved for link synchronization
K23.7 Carrier Extend. Used to PAD the end of a data frame out to an even

number of Symbols, so that next frame, or IDLE sequence starts on
an even footing. /R/

K27.7 Start of data frame /S/
K29.7 End of data frame /T/
K30.7

Table 1: Komma Characters

Several special sequences are defined:

Set Sequence Comment
/I1/ /K28.5/D5.6/ Idle sequence, sent when running DP is +, flips it to -.

Sent automatically.
/I2/ /K28.5/D16.2/ Idle sequence, sent when running DP is -, maintains it

as -. Sent automatically.
/EPD/ /T/R/ or /T/R/R/ Used to end a data frame, the addition of an extra /R/

is used to pad things out to an even number.
/LOOP/ /K28.5/D12.6/ Low-level link loop back start (DON'T SEND from

User-Logic)
/ENDLOOP/ /K28.5/D16.7/ Low-level link loop back end (DON'T SEND from

User-Logic)
/LINKSTART/ /K28.5/D1.4/ Link Start. (DON'T SEND from User-Logic)
/LINKACK/ /K28.5/D30.3/ Link Start ACK. (DON'T SEND from User-Logic)

Table 2: Special Sequences

 4

2 DIF Commands (from LDA or USB to DIF FPGA)

The commands are subdivided into:

- timing critical commands (see table 3), sent with “FAST command frames” (see section 1.1)
- timing uncritical signals (see table 8) that are sent with “BLOCK transfers (see section 1.2).

For each command that is sent from LDA to DIF, the DIF has a dedicated command register. The
address of this command register is defined:

- for FAST_Commands by the X in the incoming DX.Y command word (see section 1.1)
- for Block-Transfers by the type_modifier (see section 1.2).

Command registers are 16-bit, and can be subdivided for several functional purposes.

The general notation is:

15 10 9 5 4 3 2 1 0
Reserved Status Bits(4:0) Bit Bit Bit Bit Bit

R, +0 RC, +10100 RW, +0 RS, +0 RW, +0 RW, +0 RW, +0

Note: R = Readable by the LDA,

W = Writeable by the LDA,
C = Clearable by the LDA,
S = Settable by the LDA,

+x = Value undefined after reset,
+0 = Value is 0 after reset,
+1 = Value is 1 after reset,

2.1 FAST Commands

FAST Command
see section 1.1

komma
character

command
word D

Operation Change
DIF State?

reset_BCID K28.3 D1.1 reset BCID no
start_acquire K28.3 D2.1

D2.2
D2.3

start data-taking (int. trig)
start data-taking (ext. trigger)

stop data-taking

yes

stop_readout K28.3 D3.1
D3.2

stop data transfer DIF=>LDA
continue data transfer

no

ECAL specific ####
 K28.3 D5.0

DHCAL specific ####
 K28.3 D8.0

AHCAL specific ####
calibrate K28.3

D11.1
D11.2
D11.3
D11.4

do a calibration run:
with light sys., int. trig

with charge sys., int. trig
with light sys., ext. trig.

with charge sys., ext. trig.

yes

DCC identifier ####
 K28.3 D15.0

Table 3: FAST Commands (timing critical and broadcasts) from LDA to DIF

 5

ECAL specific (D5.0 – D7.7), DHCAL specific (D8.0 – D10.7), AHCAL specific (D11.0 – D13.7),
DCC identifier (D15.0-D17.7)

2.1.1 reset_BCID, FAST-command, set by D1.1

15 1 0
 reserved BCID_counter

+0 S, +0

Bit no. Bit Field Description

15 – 1 reserved reserved
0 BCID_counter RESET the BCID (bunch counter) synchronously for all

DIFs (broadcast command):
reset_BCID = ‘1’: reset is active for 4 clock cycles,
afterwards the DIF resets this bit automatically (set by D1.1)
reset_BCID = ‘0’: reset is not active.

Table 4: reset_BCID register description

This register cannot be read from the LDA. A status bit of this command is in the general register (see
section 2.2.2).

2.1.2 start_acquire, FAST-command, set by D2.Y

Bit no. Bit Field Description

15 – 3 reserved reserved
2 stop stop data-taking synchronously for all DIFs (broadcast

command):
stop = ‘1’: data taking is stopped (set by D2.3)
stop is reset by the DIF automatically after executing the
command.
stop=’0’: no action

1 start_ext start data-taking synchronously for all DIFs (broadcast
command) with external trigger:
start_ext = ‘1’: data taking is started (set by D2.2)
start_ext is reset by the DIF automatically after executing the
command. Puts DIF into “ACTIVE” mode.
start_ext=’0’: no action

0 start_int start data-taking synchronously for all DIFs (broadcast
command) with internal trigger:
start_int = ‘1’: data taking is started (set by D2.1)
start_int is reset by the DIF automatically after executing the
command. Puts DIF into “ACTIVE” mode.
start_int=’0’: no action

Table 5: start_acquire register description

15 3 2 1 0
reserved stop start_ext start_int

+0 S, +0 S, +0 S, +0

 6

This register cannot be read from the LDA. Status bits of this command is in the general register (see
section 2.2.X).

2.1.3 stop_readout, FAST-command, set by D3.Y

Bit no. Bit Field Description

15 – 2 reserved reserved
1 CONTINUE continue readout synchronously for all DIFs (broadcast

command):
CONTINUE = ‘1’: readout is continued (set by D3.2)
CONTINUE is reset by the DIF automatically after executing
the command.
CONTINUE=’0’: no action

0 STOP stop readout synchronously for all DIFs (broadcast
command):
STOP = ‘1’: readout is stopped (set by D3.1)
STOP is reset by the DIF automatically after executing the
command.
STOP=’0’: no action

Table 6: stop_readout register description

2.1.4 calibrate, FAST command, set by D11.Y, AHCAL specific

15 4 3 2 1 0
Reserved CALIB3 CALIB2 CALIB1 CALIB0

+0 S, +0 S, +0 S, +0 S, +0

Bit no. Bit Field Description

15 – 4 reserved reserved
3 CALIB3 start a calibration run synchronously for all DIFs (broadcast

command) with charge injection, external trigger:
CALIB3 = ‘1’: data taking is started (set by D11.4)
CALIB3 is reset by the DIF automatically after executing the
command. Puts DIF into “ACTIVE” mode.
CALIB3=’0’: no action

2 CALIB2 start a calibration run synchronously for all DIFs (broadcast
command) with LEDs, external trigger:
CALIB2 = ‘1’: data taking is started (set by D11.3)
CALIB2 is reset by the DIF automatically after executing the
command. Puts DIF into “ACTIVE” mode.
CALIB2=’0’: no action

1 CALIB1 start a calibration run synchronously for all DIFs (broadcast
command) with charge injection, internal trigger:
CALIB1 = ‘1’: data taking is started (set by D11.2)

15 2 1 0
reserved CONTINUE STOP

+0 S, +0 S, +0

 7

Bit no. Bit Field Description

CALIB1 is reset by the DIF automatically after executing the
command. Puts DIF into “ACTIVE” mode.
CALIB1=’0’: no action

0 CALIB0 start a calibration run synchronously for all DIFs (broadcast
command) with LEDs, external trigger:
CALIB0 = ‘1’: data taking is started (set by D11.1)
CALIB0 is reset by the DIF automatically after executing the
command. Puts DIF into “ACTIVE” mode.
CALIB0=’0’: no action

Table 7: calibrate register description (AHCAL specific)

This register cannot be read from the LDA. Status bits of this command is in the general register (see
section 2.2.X).

2.2 BLOCK TRANSFER address map

Bock Transfer
Name (command)

see section 1.2

type_modifier
(command def.)

16-bit hex

data
16-bit
hex

Operation Change
DIF

State?
power_on 0x0002 0x0000

0x0001
0x0002
0x1000

turn power regulators off
 turn power regulators on

automatic: controlled by DIF
read power register

yes

reset 0x0004 0x0001
0x0002
0x0004
0x0008
0x1000

reset of DIF
reset of slab

reset all
reset slow-control registers

read reset register

yes

set_DIF_mode 0x0006 0x0001
0x0002
0x1000

set detector into “SLEEP”
set detector into “READY”

read DIF_mode register

yes

power_pulsing 0x0008 0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x1000

turn pwr_analog ON
turn pwr_digital ON

turn pwr_ss/pwr_sca ON
turn pwr_adc ON
turn pwr_dac ON

turn all ON
read power_pulsing register

no

transfer_sc_data 0x000A sc_data

0x1000

load data from LDA to DIF
(n data vectors)

read transfer_sc_data reg.
(1 data vector)

yes

load_sc_data 0x000C 0x0001
0x0101
0x0002
0x0102
0x0004
0x0104
0x0008
0x0108

load set1_0 from DIF to slab1
load set1_1 from DIF to slab1
load set2_0 from DIF to slab2
load set2_1 from DIF to slab2
load set3_0 from DIF to slab3
load set3_1 from DIF to slab3
load set4_0 from DIF to slab4
load set4_1 from DIF to slab4

yes

 8

Bock Transfer
Name (command)

see section 1.2

type_modifier
(command def.)

16-bit hex

data
16-bit
hex

Operation Change
DIF

State?
0x0080
0x1000

readback all sets from DIF
read load_sc_data reg.

read_results 0x000E 0x0001
0x1000

read data slab via DIF to LDA
read read_results reg.

yes

set_control_reg 0x0010 16-bit
control-
register

set control register no

read_status_control 0x0012 0x0001
0x0002
0x0003

readout of DIF control register
readout of DIF status1 register
readout of DIF status2 register

no

readout_info 0x0014 0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040

read DIF firmware date
read DIF firmware version

read board’s production date
read DIF board-ID

read board’s version number
read DIF serial number

readout all infos

no

FPGA_firmware 0x0018 firmware
-data

0x1000

load data from LDA to DIF
(n data vectors)

read transfer_sc_data reg.
(1 data vector)

no

sel_command_input 0x001A 0x0000
0x0001
0x0002
0x1000

LDA-DIF link is used
DIF-DIF link is used

reset input selection logic
read sel_ command_input reg.

no

pre_spill_indication 0x001C 0x0001

0x1000

indicates an upcoming
“start_acquire”

read pre_spill_ind. register

yes

ECAL specific ####

 0x0030
DHCAL specific ####

 0x0050
AHCAL specific ####

read_temp_power 0x0070 0x0000
0x0001
0x0002
0x0003
0x0004
0x1000

temp/power sensor readout:
read temp. results µC to DIF

temp. results DIF to LDA
read volt./currents µC to DIF

volt./currents DIF to LDA
read temp_power register

yes

read_calibrate_status 0x0072 0x1000 read calibration status register no
load_calib_settings 0x0074 calib_dat

a
n*16-bits

Set DACs (pulse heights) and
delay regs. of the calibration

system:

no

read_calib_settings 0x0076 0x0001
0x1000

Read current settings
read calib_analog register

no

readout_probe_regs 0x0078 0x0001
0x1000

Read ASICs probe regs
read probe_regs register

yes

uC_firmware 0x007A controller
data

n*16-bits

load new µC software
(see also: packettype)

no

 9

Table 8: Block transfers between LDA and DIF

type_modifier:
ECAL specific (0x0030-0x004F), DHCAL specific (0x0050-0x006F), AHCAL specific (0x0070 – 0x008F)

Change DIF State (last column table 3 and table 8) means: If the DIF changes its state from „IDLE“ to
any other state by a received command, the respective operation should not be interrupted by
following commands except for emergencies or resets. After completion of the tasks, the DIF changes
back to “IDLE” automatically and is ready for new commands.

2.2.1 power_on, BLOCK Transfer command, address 0x0002

15 2 1 0
 reserved automatic slab_power

R, +0 RW, +0 RW, +0

Bit no. Bit Field Description

15 – 2 reserved reserved
1 automatic automatic = ‘1’: power signals (c.f. section 2.2.4) are

controlled by DIF. slab_power has to be at ‘1’ for automatic
operation.
automatic = ‘0’: no action
automatic is reset when slab_power is set to ‘0’.

0 slab_power Switch on or off slab power:
slab_power = ‘1’: slab power is on (set by data=0x0001)
slab_power = ‘0’: slab power is off (set by data=0x0000)

Table 9: power_on register description

2.2.2 reset, BLOCK Transfer command, address 0x0004

Bit no. Bit Field Description

15 – 4 reserved reserved
4 reset_BCID Reset bunch counters of the ASICs, set by FAST Command

(see section 2.1.1), read only.
reset_BCID = ‘1’: reset is active for 4 clock cycles,
reset_BCID = ‘0’: reset is not active.

3 reset_SC reset of the slow control registers of the ASICs:
reset_SC = ‘1’: reset active for 6 clock cycles, afterwards the
DIF resets this bit automatically (set by data=0x0008)
reset_SC = ‘0’: reset not active.

2 reset_all general reset of DIF and slab electronics:
reset_all = ‘1’: reset active for 6 clock cycles, afterwards the
DIF resets this bit automatically (set by data=0x0004)
reset_all = ‘0’: reset not active.

15 5 4 3 2 1 0
reserved reset_BCID reset_SC reset_all reset_slab reset_DIF

R, +0 R, +0 RS, +0 RS, +0 RS, +0 RS, +0

 10

Bit no. Bit Field Description

1 reset_slab reset of slab electronics:
reset_slab = ‘1’: reset active for 6 clock cycles, afterwards
the DIF resets this bit automatically (set by data=0x0002)
reset_slab = ‘0’: reset not active.

0 reset_DIF reset of DIF electronics:
reset_DIF = ‘1’: reset active for 6 clock cycles, afterwards
the DIF resets this bit automatically (set by data=0x0001)
reset_DIF = ‘0’: reset not active.

Table 10: Reset register description

2.2.3 DIF_mode BLOCK Transfer command, address 0x0006

15 7 6 4 3 2 1 0
Reserved current_mode(2:0) LOOP SYNC READY SLEEP

R, +0 R, +000 R, +0 R, +0 RS, +0 RS, +0

Bit no. Bit Field Description

15 – 7 reserved reserved
6 - 4 current_mode Shows the actual mode, the DIF is in, defined by the last

“DIF_mode” command from the LDA (read-only):
current_mode = ‘000’ DIF is in SLEEP mode,
current_mode = ‘001’ DIF is in IDLE mode,
current_mode = ‘010’ DIF is in SYNC mode,
current_mode = ‘011’ DIF is in LOOP mode

3 LOOP puts DIF into LOOP mode (debugging)
LOOP = ‘1’ : DIF is in LOOP mode with LDA, after
accepting, the DIF resets this bit automatically and
‘current_mode is set to ‘011’ (set by FAST Command)
LOOP = ‘0’ : no mode change

2 SYNC puts DIF into SYNC mode (DIF synchronization)
SYNC = ‘1’ : DIF is in SYNC mode, after accepting, the DIF
resets this bit automatically and ‘current_mode is set to ‘010’
(set by FAST Command)
SYNC = ‘0’ : no mode change

1 READY puts DIF into IDLE mode (general wait and ready state):
IDLE = ‘1’ : DIF is in IDLE mode, after accepting, the DIF
resets this bit automatically and ‘current_mode is set to ‘001’
(set by data = 0x0002)
IDLE = ‘0’ : no mode change

0 SLEEP puts DIF into SLEEP mode (powered-down wait state)
SLEEP = ‘1’ : DIF is in SLEEP mode with LDA, after
accepting, the DIF resets this bit automatically and
‘current_mode is set to ‘000’ (set by data = 0x0001)
SLEEP = ‘0’ : no mode change

Table 11: DIF_mode register description

 11

2.2.4 power_pulsing BLOCK Transfer command, address 0x0008

This command is for debugging only. The power pulsing control should be done automatically by the
DIF in order to guarantee a timing-precise switching. E.g., on a “start_acquire”-command from the
LDA, the DIF switches-on the slab before starting the data-taking.

15 6 5 4 3 2 1 0
Reserved SLAB DAC ADC SS_SCA DIGITAL ANALOG

R, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

Bit no. Bit Field Description

15 – 6 reserved reserved
5 SLAB Switch the power of the complete slab, namely the power-

pulsing control signals: pwr_analog, pwr_digital,
pwr_ss/pwr_sca, pwr_adc, pwr_dac.
SLAB = ‘1’ SLAB is switched ON (set by data = 0x0020)
SLAB = ‘0’ SLAB is switched OFF

4 DAC DAC = ‘1’ pwr_dac is switched ON (set by data = 0x0010)
DAC = ‘0’ pwr_dac is switched OFF

3 ADC ADC = ‘1’ pwr_adc is switched ON (set by data = “0x0008)
ADC = ‘0’ pwr_adc is switched OFF

2 SS_SCA SS_SCA = ‘1’ pwr_ss/pwr_sca is switched ON (set by
data = 0x0004)
SS_SCA = ‘0’ pwr_ss/pwr_sca is switched OFF

1 DIGITAL DIGITAL = ‘1’ pwr_digital is switched ON (set by
data = 0x0002)
DIGITAL = ‘0’ pwr_digital is switched OFF

0 ANALOG ANALOG = ‘1’ pwr_analog is switched ON (set by
data = 0x0001)
ANALOG = ‘0’ pwr_analog is switched OFF

Table 12: power_pulsing register description

2.2.5 transfer_sc_data, BLOCK Transfer command, address 0x000A

Bit no. Bit Field Description

15 – 2 reserved reserved
1 CRC CRC = ‘1’ CRC-check ok for last LDA-DIF data transfer

CRC = ‘0’ transmission errors in current data set
0 LDA_DIF LDA_DIF = ‘1’ slow-control data is transferred from LDA to

DIF (set by data = 0x0001). Bit is reset by DIF after
completition automatically.
LDA_DIF = ‘0’ no action

15 2 1 0
reserved CRC LDA_DIF

R, +0 R, +0 RS, +0

 12

Table 13: transfer_sc_data register description

By this command, all slow_control configuration data sets that are stored in the Flash
memory of the DIF are overwritten. The first 16-bit data block arriving with the block transfer
is stored @ the base address of the Flash memory. See section 2.3.

2.2.6 load_sc_data, BLOCK Transfer command, address 0x000C

15 9 8 7 6 4 3 2 1 0
STATUS[6:0] SET READBACK reserved SLAB4 SLAB3 SLAB2 SLAB1

R, +0 RW, +0 RS, +0 R, +0 RS, +0 RS, +0 RS, +0 RS, +0

Bit no. Bit Field Description

15 – 9 STATUS[6:0] if the slabs (partitions) are programmed twice with sc_data,
the readback data can be used to identify problems.
STATUS[6:4]: reserved for later use
STATUS[3] = ‘1’: sc_programming slab4 does not work
STATUS[3] = ‘0’: sc_programming slab4 ok
STATUS[2] = ‘1’: sc_programming slab3 does not work
STATUS[2] = ‘0’: sc_programming slab3 ok
STATUS[1] = ‘1’: sc_programming slab2 does not work
STATUS[1] = ‘0’: sc_programming slab2 ok
STATUS[0] = ‘1’: sc_programming slab1 does not work
STATUS[0] = ‘0’: sc_programming slab1 ok

8 SET defines which sc-data set shall be used for slab (partition):
SET = ‘0’ default configuration is used
SET = ‘1’ alternative configuration is used
See section 2.3

7 READBACK LDA reads back the slow-control data currently stored in the
DIF Flash memory. Bit is reset by DIF after completion.
LDA_readback = ‘1’ readback is active (set by data =
0x0100)
LDA_readback = ‘0’ no action

6 - 4 reserved can be used to define more partitions if needed later
3 SLAB4 SLAB4 = ‘1’ configure slab3 (partition3) with the sc-data set

defined by ‘SET’. Bit is reset by DIF after completion. (set
by data = 0x0008)
SLAB4 = ‘0’ no action

2 SLAB3 SLAB3 = ‘1’ configure slab3 (partition3) with the sc-data set
defined by ‘SET’. Bit is reset by DIF after completion. (set
by data = 0x0004)
SLAB3 = ‘0’ no action

1 SLAB2 SLAB2 = ‘1’ configure slab3 (partition3) with the sc-data set
defined by ‘SET’. Bit is reset by DIF after completion. (set
by data = 0x0002)
SLAB2 = ‘0’ no action

0 SLAB1 SLAB1 = ‘1’ configure slab3 (partition3) with the sc-data set
defined by ‘SET’. Bit is reset by DIF after completion. (set
by data = 0x0001)
SLAB1 = ‘0’ no action

Table 14: load_sc_data command register

 13

2.2.7 read_results, BLOCK Transfer command, address 0x000E

Bit no. Bit Field Description

15 – 2 reserved reserved
1 SLAB_DIF SLAB_DIF = ‘1’ results are read from slab via DIF to LDA

(set by data = 0x0001). Bit is reset by DIF after completion.
SLAB_DIF = ‘0’ no action

Table 15: read_results register description

2.2.8 DIF Control Register: set_control_reg, BLOCK Transfer command, address 0x0010

By this command the DIF control register is set. A read-access to this register is done by the command
read_status_control (see next section).

The DIF CONTROL REGISTER (16-bit, RW, +0):

Bit no. Bit Field Description

15-6 CR15-CR6 to be defined
5 CR5 to be defined
4 CR4 to be defined
3 CR3 to be defined
2 CR2 to be defined
1 CR1 to be defined
0 CR0 CR0 = ‘1’ pre-spill signal is used to indicate an upcoming

‘start_acquire’. DIF prepares for data taking (ACTIVE
MODE). start_acquire is sent exactly at spill start.
CR0 = ‘0’ pre-spill signal is not used. “start_acquire” is sent
from DAQ well in advance before the spill, so that DIF can
prepare for data taking.

Table 16: DIF Control Register

15 2 1 0
reserved DIF_LDA SLAB_DIF

R, +0 RS, +0 RS, +0

 14

Figure 2: Usage of control register bit 0 (CR0). With CR0='1', the command pre_spill_indication is used
from the DIF to prepare for a measurement (e.g. turn on slab power). The start_acquire is used for
synchronous indication of the start of the bunch-train.

Figure 3: Usage of control register bit 0 (CR0). With CR0='0', the command pre_spill_indication is not
used. The DIF prepares for a measurement (e.g. turn on slab power) following the start_acquire that is
sent XXX clock cycles (to be defined) before the start of the bunch-train.

2.2.9 read_status_control, BLOCK Transfer command, address 0x0012

Bit no. Bit Field Description

15 – 2 reserved reserved
1 STATUS STATUS = ‘1’ read DIF Status Register (set by data =

0x0002). Bit is reset by DIF after completion.
STATUS = ‘0’ no action

0 CONTROL CONTROL = ‘1’ read DIF Control Register (set by data =
0x0001). Bit is reset by DIF after completion.
CONTROL = ‘0’ no action

Table 17: read_status_control register description

The DIF STATUS1 REGISTER (16-bit, R, +0):

Bit no. Bit Field Description

12 - 9 ST12 – ST9 ST12-ST9 = ‘0000’ DIF is in SLEEP mode,
ST12-ST9 = ‘0001’ DIF is in IDLE mode,
ST12-ST9 = ‘0010’ DIF is in SYNC mode,
ST12-ST9 = ‘0011’ DIF is in LOOP mode

15 2 1 0
reserved STATUS CONTROL

R, +0 R, +0 R, +0

 15

Bit no. Bit Field Description

ST12-ST9 = ‘0100’ DIF is in ACTIVE mode,
ST12-ST9 = ‘0101’ DIF is in READOUT mode,
ST12-ST9 = ‘0110’ DIF is in CONFIG mode current_mode
ST12-ST9 = ‘0111’ DIF is in DEBUG mode,
ST12-ST9 = ‘1000’ DIF is in CALIBRATE mode
ST12-ST9 = ‘1111’ DIF is in ERROR mode

8 ST8 ST8 = ‘1’: current operation caused timeout (watchdog
triggered)
ST8 = ‘0’: no timeout

7 ST7 ST7 = ‘1’: some supply voltages/currents show bad values
ST7 = ‘0’: power consumption ok

6 ST6 ST6 = ‘1’: commands from LDA are sent to DIF-DIF link
ST6 = ‘0’: DIF-DIF link not active

5 ST5 ST5 = ‘1’: Commands from DIF-DIF link are used
ST5 = ‘0’: Commands from LDA-DIF interface are used

4 ST4 ST4 = ‘1’: Slow Control programming of ASICs (slabs)
shows errors (readback). See which partition in section 2.2.6
ST4 = ‘0’: SC_programming ok

3 ST3 ST3 = ‘1’: temperature too high (in-detector or DIF)
ST3 = ‘0’: temperature ok

2 ST2 ST2 = ‘1’: Command rejected: DIF is active with other
command.
ST2 = ‘0’: incoming command is executed

1 ST1 ST1 = ‘1’: incoming command unknown
ST1 = ‘0’: incoming command ok

0 ST0 ST0 = ‘1’: CRC of incoming frame shows errors
ST0 = ‘0’: Incoming frame is valid (no transmission errors)

Table 18: DIF Status Register

The DIF STATUS2 REGISTER (16-bit, R, +0):

Bit no. Bit Field Description

12 - 9
8
7
6
5
4
3
2
1 EndReadout EndReadout=’1’: The last ASIC in readout chain has sent a

EndReadout to DIF. This bit is cleared by DIF on a
‘start_readout’ command.
EndReadout=’0’: no EndReadout has arrived at DIF

0 SCASat SCASat=’1’: One of the ASICs has sent a SCASat to DIF.
This bit is cleared by DIF on a ‘start_acquire’ command
SCASat=’0’: no SCASat from ASICs arrived at DIF

Table 18: DIF Status Register

 16

2.2.10 readout_info, BLOCK Transfer command, address 0x0014

15 7 6 5 4 3 2 1 0
reserved ALL SERIAL VERSION ID DATE FWvers FWdate

R, +0 R, +def R, +def R, +def R, +def R, +def R, +def R, +def

Bit no. Bit Field Description

15 – 7 reserved reserved
6 ALL ALL = ‘1’ read all ‘info’ registers (set by data = 0x0040). Bit

is reset by DIF after completion.
ALL = ‘0’ no action

5 SERIAL SERIAL = ‘1’ read DIF SERIAL number (set by data =
0x0020). Bit is reset by DIF after completion.
SERIAL = ‘0’ no action

4 VERSION VERSION = ‘1’ read DIF board version number (set by data
= 0x0010). Bit is reset by DIF after completion.
VERSION = ‘0’ no action

3 ID ID = ‘1’ read DIF board ID number (set by data = 0x0008).
Bit is reset by DIF after completion.
ID = ‘0’ no action

2 DATE DATE = ‘1’ read DIF production date (set by data =
0x0004). Bit is reset by DIF after completion.
DATE = ‘0’ no action

1 FWvers FWvers = ‘1’ read DIF Firmware version number (set by data
= 0x0002). Bit is reset by DIF after completion.
FWvers = ‘0’ no action

0 FWdate FWdate = ‘1’ read DIF Firmware date (set by data =
0x0001). Bit is reset by DIF after completion.
FWdate = ‘0’ no action

Table 19: readout_info register description
Each of the information (DIF SERIAL number, DIF board version number, DIF board ID number, DIF
production date, …) are 16-bit and part of the DIF firmware (cannot be changed via LDA).

2.2.11 FPGA firmware, BLOCK Transfer command, address 0x0018

Bit no. Bit Field Description

15 – 2 reserved reserved
1 CRC CRC = ‘1’ CRC-check ok for last LDA-DIF data transfer

CRC = ‘0’ transmission errors in current data set
0 LDA_DIF LDA_DIF = ‘1’ DIF firmware data is transferred from LDA

to DIF (set by data = 0x0001). Bit is reset by DIF after
completion automatically.

15 2 1 0
reserved CRC LDA_DIF

R, +0 R, +0 RS, +0

 17

Bit no. Bit Field Description

LDA_DIF = ‘0’ no action

Table 20: FPGA firmware download register description

2.2.12 sel_command_input, BLOCK Transfer command, address 0x001A

Bit no. Bit Field Description

15 – 2 reserved reserved
1 RES_SEL RES_SEL = ‘1’ input selection logic is reset for 4 clock

cycles. Bit is reset by DIF after completion automatically.
(set by data=0x0002)
RES_SEL= ‘0’ no action

0 INPUT_SEL INPUT_SEL = ‘1’ DIF-DIF input is used
(set by data = 0x0001).
INPUT_SEL = ‘0’ LDA-DIF input is used (standard conf.)
(set by data = 0x0000).

Table 21: select command input register description

2.2.13 pre_spill_indication, BLOCK Transfer command, address 0x001C

15 1 0
 reserved PRE_SPILL

R, +0 RS, +0

Bit no. Bit Field Description

15 – 1 reserved reserved
0 PRE_SPILL PRE_SPILL = ‘1’: a “start_acquire is expected within XXXX

clock cycles. Puts DIF into “ACTIVE” mode. Bit is reset by
DIF after completion automatically. (set by data=0x0001)
PRE_SPILL = ‘0’: no action

Table 22: pre_spill_indication register description

2.3 address map information

The addresses in this section refer to the type_modifier sent in the incoming BLOCK Transfer
commands. So the addresses are the same as in table 8.

15 2 1 0
reserved RES_SEL INPUT_SEL

R, +0 RS, +0 RW, +0

 18

type_modifier address range

(16-bit hex)
function remarks

0x0000 – 0x0090 Block Transfer Commands
0x1000 – 0x1FFF slab1: default sc_data set
0x2000 – 0x2FFF slab1: alternative sc_data set
0x3000 – 0x3FFF slab2: default sc_data set
0x4000 – 0x4FFF slab2: alternative sc_data set
0x5000 – 0x5FFF slab3: default sc_data set
0x6000 – 0x6FFF slab3: alternative sc_data set
0x7000 – 0x7FFF slab4: default sc_data set
0x8000 – 0x8FFF slab4: alternative sc_data set

Table 23: address map of the type_modifier for the BLOCK Transfers. Preliminary!!

 19

3 DIF States and State Diagram

In the first DIF version, the top level finite-state-machine (FSM) has a simple structure with only three
general (top-level) states as shown in Fig. 4. Additionally, the system can make use of "programmed"
config/status registers. The global DAQ supervises global command sequencing and ensures that
current operations are not disturbed by other operations. More complex FSMs could be used for the
DIF-ASICs (ASICs inside the detector) interface modules, but these are "independent" to ensure the
sequencing of the chips operation would not be disturbed/interrupted by other DIF functions (in a
given global state of the DIF).

Figure 4: DIF States

SLEEP: Detector is powered-down, DIF still communicates with the DAQ (LDA). DIF configuration
(register write and read) is possible. ASICs slow-control configuration can take place in this mode.
READY: All operations are allowed. ASICs slow-control configuration can take place in this mode.
Measurements can only be started if the detector is properly configured (slow control data is loaded
into ASICs), no errors have occurred.
OPERATING DETECTOR: DIF can only execute commands that do not disturb the current data-
taking/data-conversion/readout operation (i.e. no slow-control loading, no debugging). ASICs are
operated autonomously by the DIF-ASIC interface. All necessary functions for operation (e.g. trigger)
are generated by hardware.

State Transitions: Commands & Conditions (see Fig. 4):
1) Transition executed on: power_on, pre_spill_indication (asynchronous, see Fig. 2), set_DIF_mode,
power_pulsing (debugging)
2) Transition executed on: “turn power regulators off” set by option of power_on command,
set_DIF_mode, power_pulsing (debugging)
3) this transition is allowed only when slow_control configuration is done and no errors occured.
Transition executed on: start_acquire, pre_spill_indication (synchronous, see Fig. 3), read_results
command.
4) Transition executed on: “stop_data taking” set by option of start_acquire command,
RAMFull/SCASat condition, “readout_results done” condition, reset command (all options)

 20

References
[1] Marc Kelly’s web page:
http://www.hep.manchester.ac.uk/u/mpkelly/calice/lda/Calice_LDA_Overview.html

[2] Matthew Warren et al. “DAQ Status and Overview”, CALICE week Manchester,
Electronics Readout session II, Sept. 8th-10th, 2008

Revision History

Version / Date Changes with respect to last version
1.7 (3.12.2008) Reference document
1.8 (5.1.2009) - Revision History added

- DIF Status Register defined partly (section 2.2.9)
- stop_readout added (FAST Command, new section 2.1.3)
- reset_SC (reset of slow-control data only) added (section 2.2.2)
- Figure2 and Figure3 added (section 2.2.8)

1.9 (6.2.2009) - power_on command extended (section 2.2.1)
- DIF FSM changed (section 3)

1.10 (24.2.2009) - STATUS2 register has been added (see section 2.2.9)
- command ‘read_results’ changed to “send while receive” (section 2.2.7)
- State ‘IDLE’ was renamed to ‘READY’ (section 2.2.3)
- ‘ALL’ option added to readout_info command (section 2.2.10)
- State transitions have been defined (section 3, preliminary)

