S1 global: thermal analysis

Webex Meeting March 10th, 2009 Serena Barbanotti

3D model components

- Starting design: UGS NX4 simplified 3D model
- o Included components:
 - 2 support posts
 - 70 K shield (upper and lower parts, pipe)
 - 5 K shield (upper and lower parts, pipe)
 - Gas Return Pipe (pipe, shapes, cavity supports)
 - Invar rod (with fixing point to central shape and cavities)
 - Helium tanks
 - Beam pipe between tanks with coupler ports

4 K shield **CANSYS** 0.000 0.500 1.000 (m) 0.750 0.250 0.150 0.050 0.200 (m) 0.000 0.050 0.150

Helium tanks, beam pipes and coupler ports

Loads

- o Temperatures:
 - 300 K at upper post disk
 - 77 K at finned pipe surface
 - 4 K at finned pipe surface
 - 2 K at GRP and tank surfaces
- o Heat flux (radiation):
 - 1 W/m² at 77 K shield surface
 - 0.05 W/m² at 4 K shield surface
- Heat flow (conduction of RF cables and couplers):
 - 0.5 W at 2 K coupler edge
 - 2.8 W at 4 K coupler opening edges
 - 16.3 W at 77 K coupler opening edges

Loads (summary table)

Radiation	W/m^2	heat flux at shield surfaces
2K	-	
4K	0.05	
77K	1	
Conduction at couplers	W	heat flow on coupler opening edges
2K	0.4	Scaled from Tesla TDR data
4K	1	
77K	10.5	
Conduction of RF cables	W	heat flow on coupler opening edges
2K	0.063	Norihito data
4K	1.78	
77K	5.75	
Total load at coupler edges	W	effective heat flow on the model
2K	0.5	
4K	2.8	
77K	16.3	

Loads: open question

Original data from Tom excel file

Data to be confirmed

2K	notes
RF load	OK: =0 for static
Supports	calculated by ansys
Input coupler	ОК
HOM coupler (cables)	ОК
HOM absorber	OK: = 0
Beam tube bellows	= 0
Current leads	OK: =0 for no quad
HOM to structure	= 0
Coax cable	= 0
Instrumentation taps	= 0

5K/40K	
Radiation	OK
Supports	calculated by ansys
Input coupler	ОК
HOM coupler (cables)	OK
HOM absorber	OK: = 0
Current leads	OK: =0 for no quad
Diagnostic cable	to be calculated

Preliminary results: reactions

o At 2 K: 0.5 W

o At 4 K: 5.8 W

At 77 K: 50.7 W

o At 300 K: 21.8 W

Results: shields

Results: GRP, shapes, posts

Results: cavity string

Next steps

- Verify heat loads for the static simulation (fill Tom table with S1 global data and confirm RF cables design)
- Implement cool down and warm procedure at the KEK facility for the transient simulation
- Verification of calculated data with experimental data collected by KEK