

SCRF WebEx Meeting 2009-3-18

Report from PM and Group Leader TILC09-AAP Review Preparation TILC09 Parallel Session Agenda

Report from PMs

- Visiting SCRF cavity manufacturers, completed, and many thanks for everyone's cooperation
 - AES, Niowave in AMs US)
 - ACCEL, ZANON in EU
 - MHI in AS (Japan)

• Preparation for AAP Review

- General agenda fixed,
- Parallel session agenda need to be fixed soon,

ic

ir iit

Report from GLs

- Cavity Gradient R&D: Lutz
- Cavity Integrataion: Hitoshi
- Cromodule: Norihito
- Cryogenics: Tom
- HLRF: Shigeki
- MLI: Chris

AAP Review – SCRF

Draft Agenda and Report Format

Feb., 20, 2009 Revised, March, 6, 2009 Re-revised, March 18, 2009

SCRF Webex Meeting

AAP Review General Agenda

	17(Fri)	18(Sat)	19(Sun)	20(mon)	21(Yue)			
9			ATF					
10	ACFA-GDE	050		AS	Joint			
11	Joint	CFS	SRF		Summary			
12								
13								
14								
4		CESRTA		MM				
15	AAP	OLONIA	SRF	РМ				
	Guidance			summary				
16		FLASH						
17		AAP Closed Session						

- While the AAP review is not closed, attendance is limited due to space constraints (according to the request by Barry).
- Participation of those not directly involved in the proceedings (i.e. those who are not either panel members, speakers or organizers) is limited to 'observers' only.
- Virtually all of the GDE Technical Area Group Leaders have been asked to present material to the review and the times of their presentations must the taken into account in the organization of the parallel sessions. This means that, on average, there will be less time available for parallel sessions than there has been at previous GDE meetings.

Parallel Session

- The primary goal of the TILC09 parallel sessions is to present and discuss R & D and design activities now in progress in order to bring the latest results to the GDE community.
- We expect the parallel sessions to also focus on the re-baselining process (to be completed by early 2010). Many (but not all) of the re-baselining proposed critical decisions have been listed in the 'Minimum Machine' initiative).
- We would like to ask parallel session conveners to help guide the rebaselining process by:
- 1) providing a forum for stakeholders to give input;
- 2) collecting their input and developing a summary for the Project Managers and for the TILC09 closing plenary; and
- 3) evaluating current status and recommending and organising further studies as proactively as possible.

;lr

İİL

Parallel Session (continued)

- The parallel sessions at TILC09 effectively launch the 2009 ILC rebaselining process. The key re-baselining activities and milestones are listed here:
- 1) Collecting input from the community starts at TILC09
- 2) Submitting preliminary recommendations next GDE meeting (ALCPG09 late September 2009)
- 3) Reviewing and approving recommendations February 2010
- At TILC09 there will be a special parallel session on Accelerator Design and Integration (co-convened by Nick Walker and Ewan Paterson), which will focus on many of the re-baseline options and in particular on the optimization of the central injector complex. All group leaders affected by this discussion are expected to participate. To avoid any potential conflict with the AAP review and other parallel sessions, this special joint session is scheduled for 16:30-19:00 on Saturday 18.04.

AAP Review Context for SCRF

Context	Charge	Note
 What is the path to finalizing the gradient Current Experimental status Established standards, and Extrapolation Role of "plug-compatibility", Time limitation and Decision Proces 	M. Champion	S0
 What is the path toward industrialization? Current experimental status Established standards, and extrapolation of Internationalization of efforts, Outline tendering process Role of Plug-compatibility 	H. Hayano	S1/S 2
Lesson expected from system test - FLASH at DESY (operational limitation of I - STF at KEK, time-line and benefit - NMF at FNAL: time-line and benefit	LC cavities) TBD H. Hayano M. Champion	S2
2000 2 48		-

٠

.

SCRF Report Agenda

Time	Report	Peported by	Note
09:00	Introduction	A. Yamamoto	
09:10 09:00 09:40	Path to finalizing cavity field gradient - R&Ds to improve the gradient - Decision process	L. Llje A. Yamamoto	S0
9:50 09:50 10:20 () 11:20	Path towards industrialization - Cavity Integration - Cryomodule -Coffee break - Role of plug-compatibility	H. Hayano N. Ohuchi A. Yamamoto	S1/S2
11:30 11:30 11:45 12;00	Path towards industrialization (cont.) - Cryogenics - HLRF - MLI: Beam Dynamics and Quadrupoles	T. Peterson S. Fukuda C. Adolphsen	To be discus sed
12:30	Lunch		
14:00 14:00 14:30 15:00	Lesson expected from system tets - STF - NMF Summary and Discussions (all subjects)	H. Hayano M. Champion A. Yamamoto	S2
9.3.1 <mark>85:30</mark>	Adjon SCRF Webex Meeting		1

SCRF parallel session

. .

. . .

SCRF Parallel Sessio	ns at TILC09						
Apr. 17 (Fri)	Apr. 18 (Sat)		Apr. 19 (Sun)		Apr. 20 (Mon)		
	9:00		8:30		9:00		
				AAP Review		Joint with CFS	
	10.00		10.00		10.00		
1 march	12:00		13:00		12:00		
Lunch 14:00	Lunch 14:00		Lunch 14:30		Lunch 14:00		
14.00	14.00		14.50	AAP Review	14.00		
	16:30		16:00				
18:00	19:00	Design&Integ	18:00		18:00		
							Total hrs
4	5.5		2		7		18.5
Conveners: L.	ient R&D (scop Lilje, H. Hayano ration, tuner, co	, M. Champ	on,??		se line)		
Conveners: H.				- ,			
		omodule					
3) Cryomodule	, ST-Global cry	omodulo					
-	-	omodulo					
Conveners: N.	-		ce				
Conveners: N. 4) HLRF, Clust	Ohuchi,??	ted RF sour					
Conveners: N. 4) HLRF, Clust Conveners: S.	Ohuchi,?? er and Distribu	ted RF sour Iphsen,?? W	ith CFS	nment			
Conveners: N. 4) HLRF, Clust Conveners: S. 5) MLI, Quadru	Ohuchi,?? er and Distribu Fukuda, C. Ado	ted RF sour Iphsen,?? W Iow-energy	ith CFS cavity alig	nment			

11 *

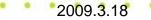
Agenda updated, April 17

			AAP	CFS	ML	sources	DR	Beam Dyn.	BDS	ACFA
17(Fri)	8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00	Registration Joint Plen. Joint Plen.	working lunch AAP AAP							
	18:00	Reception								

		AAP	CFS	ML	sources	DR	Beam Dyn.	BDS	ACFA
18(Sat)	8:00								
	9:00	CFS	х						
	10:00								
	11:00	CFS	х						
	12:00	working							
	13:00	lunch							
	14:00					v			
	15:00	CesrTA				Х			
	16:00								
	17:00	FLASH		Dec	ign & I	ntegra	tion		
	18:00	 Exec		Des	ngn o i	ntegra			

		AAP	CFS	ML	sources	DR	Beam Dyn.	BDS	ACFA
19(Sun)	8:00	Even							
	9:00	Exec		х				м	זס
	10:00	SCRF		^					
	11:00	SCRF		х				м	DI
	12:00	working							
	13:00	lunch							
	14:00	SCRF		х					
	15:00	300		^					
	16:00					V		X	
	17:00	ATF/ATF2				X		Х	
	18:00	Exec							

			AAP	CFS	ML	sources	DR	Beam Dyn.	BDS	ACFA
20(Mon)	8:00									
	9:00		Exec							
			AS	CFS	+ML	Х	Х	Х	Х	
	10:00									
	11:00		AS	CFS	- NAI	х	х	х	х	
	12:00		AS	053	TIVIL	^	^	^	^	
	13:00		working							
	14:00		lunch							
	15:00		MM							
	16:00									
	17:00		PMsummary							
			Even							
	18:00		Exec							
		Banquet								


	AAP	CFS	ML	sources	DR	Beam Dyn.	BDS	ACFA	
--	-----	-----	----	---------	----	--------------	-----	------	--

21(Tue)	9:00	GDE Plen.				
	10:00	GDE FION.				
	10.00					
	11.00					
	11.00	Joint Plen.				
	12:00					
	12:00					

Outline of Reports

SCRF

SCRF Webex Meeting

17 •

• To be filled

R&D Current Status

- What has been obtained
- What has been standard

R&D Plan in TDP

- R&D subjects and what will be expected
- Time-line
- Resource
- Global cooperation

- How to establish the optimum field gradient for ILC
 - Decision process
 - Time scale

Path to Industrialization Cavity Integration (H. H.)

Current Experimental Status

- Established standards,
- Extrapolation or results

R&D Plan in TDP

- Subjects
- Timeline
- Global cooperation
- Plug compatible condition
 - Functional and physical boundary conditions

Path to Industrialization Cryomodule (N. O. & H.C.)

Current Experimental Status

- Established standards,
- Extrapolation or results

R&D Plan in TDP

- Subjects
- Timeline
- Global cooperation
- Plug compatible condition
 - Functional and physical boundary conditions

ILC Cryogenics Work Package Status and Plans

T. Peterson 17 March 2009

ILC Cryogenics Work Status

- RDR cryogenic system effort totalled less than 1 FTE for the duration of the RDR effort
- Early technical design phase (TDP) work package development (2007) suggested tripling that to 3 FTE's (one from each region) for the duration of the TDP
- For the past year (2008) we have had less ILC cryogenics effort than during the RDR
- Result -- only a few minor updates to the ILC cryomodule heat load estimates and cryoplant size estimates have been done

Outlook for 2009

- In 2008, the scope of funding and resources for ILC limited work to certain critical R&D and planning tasks, mostly not cryogenics.
 - Cryogenics for ILC is relatively well-understood since we have LHC and Jlab cryogenics as similar systems
 - Issues like cavity processing for consistently high gradient need more R&D attention
- The 2009 budget outlook indicates that we could get back up to about the RDR level of 1 FTE (1/2 FTE in U.S. plus KEK effort on cryogenics, plus small effort in Europe from INFN and DESY)

ilc

Summary of tasks for 2009

1.4.1.	Heat loads	The heat load to the entire cryogenics system is investigated under static and dynamic conditions. Static, dynamic, and distribution system loads are considered, including tolerances and uncertainties. Overall uncertainty factors and cryoplant sizes are re-evaluated.	Peterson (FNAL), Ohuchi (KEK), Pierini (INFN), Petersen* (DESY)
1.4.2.	Cryogenic process design, cryoplant design, and surface impact	The cryogenics plant engineering is to be carried out in cooperation with industry and in close communication with CF&S technical area engineers to optimize interface with the CFS system. The location and distribution of surface equipment such as large compressors and associated utilities are optimized for minimal local impact, reliability /maintainability and cost. The integrated cycle design is evaluated. Temperature and pressure levels in cryomodules, particularly in the thermal shields, should be evaluated in the context of the full process through the cryoplants.	Klebaner (FNAL), Peterson (FNAL), Arenius (JLAB), Ganni (JLAB), Tavian* (CERN)
1.4.3.	Venting, pressure limits, and piping and vessel standards	The peak pressure in the cryogenics system in various modes of pre-cooling, steady state operation, and emergencies such as vacuum failure and helium rupture into the vacuum should be assessed, along with venting design. Cryogenics system and components need to meet industrial high-pressure gas regulation standards, which includes regional code compliance for hardware manufactured in other regions.	Peterson (FNAL), Nakai (KEK), Hosoyama (KEK), Petersen* (DESY)

Some Project X synergy

- Although no ILC effort is foreseen for item 1.4.4, below, Project X effort has begun with respect to tunnel arrangements, string lengths, segmentation, and maintenance scenarios which, although for a smaller system, will be relevant for ILC.
 - Klebaner (FNAL), Peterson (FNAL), Theilacker (FNAL)

1.4.4.	Tunnel cryogenic system design and integration with Main Linac	Design of the cryogenic system arrangement and components within the Main Linac tunnel includes cryogenic distribution design, segmentation, load- sharing, and maintenance scenarios, special 4K to 2K heat exchanger design, and liquid helium level control. Trade-off studies that compare cryomodule complexity and cost for cryogenic system loads.	(on hold, no effort foreseen)
--------	--	--	----------------------------------

Postponed tasks

1.4.5.	Oxygen deficiency hazard	Safety plan against oxygen deficiency hazard (ODH) in tunnel and surface building is investigated.	(on hold, no effort foreseen)
1.4.6	Cryogenics outside of the main linacs (e+/- sources, damping ring, RTML, BDS)	Cryogenics for e+, e- source linac, undulators, DR, BDS, RTML, and associated distribution and special objects, as unique and separate from Main Linac. The cryogenic engineering should be similar to that of the main linac system, with a smaller scale. These systems must be properly integrated into the ML cryogenics system.	(on hold, no effort foreseen)
1.4.7	Cold vacuum systems	The vacuum systems for thermal insulation in all cryogenics systems in ML, e+/- sources, BDS, RTML are designed in close cooperation with cryogenics system design. The vacuum system for beam pipe is designed as separate system, in this work package.	(on hold, no effort foreseen)

Summary: 2009 work packages

- 1.4.1 Heat loads
 - Peterson (FNAL), Ohuchi (KEK), Pierini (INFN), Petersen* (DESY)
- 1.4.2 Cryogenic process design, cryoplant design, and surface impact
 - Klebaner (FNAL), Peterson (FNAL), Arenius (JLAB), Ganni (JLAB), Tavian* (CERN)
 - Jefferson Lab (Arenius, Ganni) will provide assistance
- 1.4.3 Venting, pressure limits, and piping and vessel standards
 - Peterson (FNAL), Nakai (KEK), Hosoyama (KEK), Petersen* (DESY)
- 1.4.4 Tunnel cryogenic system design and integration with Main Linac
 - Part of Project X cryogenic effort but relevant to ILC
- * CERN and DESY effort involves primarily just provision of information from their work on XFEL and LHC.

2009.3.18 SCRF Webex Meeting 30

Path to Industrialization HLRF (S.F)

Current Experimental Status

- Established standards,
- Extrapolation or results

R&D Plan in TDP

- Subjects
- Timeline
- Global cooperation
- Plug compatible condition
 - Functional and physical boundary conditions

Path towards Industrialization ML Integration, Quadrupoles (C. A.)

Current Experimental Status

- Established standards,
- Extrapolation or results

R&D Plan in TDP

- Subjects
- Timeline
- Global cooperation
- Plug compatible condition
 - Functional and physical boundary conditions

R&D Stage

Production Stage

• Reference Information (to be attached)

Plug compatible document by PM

Lesson from System Tests FLASH (TBD)

Operation Experience

- ILC like mode
 - Long bunch
 - High charge
 - High gradient
- Experience and characterization of implication for ILC
- Further Plan

- General plan
- Time line (and Resource?)
- Benefits
- Reference Information (to be attached)

Lesson from System Tests NML (M.C.)

- General plan
- Time line (and Resource?)
- Benefits
- Reference Information (to be attached)