ILC Cherenkov Detector: Prototype Design & Testbeam Measurements

C. Bartels, A. Hartin, C. Helebrant, <u>D. Käfer</u>, J. List daniela.kaefer@desy.de

Linear Collider Workshop of the Americas 2009 (ALCPG'09) Albuquerque – Sep.29 - Oct.03, 2009

Design & Simulation

- Conceptual design & requirements
- Reflectivity measurements
- Detailed simulation studies

2 Construction

- CAD design & technical drawings
- Photodetector Mountings

3 Testbeam Measurements

- General setup @ELSA in Bonn
- Detector alignment using x- and y-scans
- Asymmetries in data & simulation

4 Summary & Outlook

Two Compton polarimeters per beam are forseen in the BDS system. One upstream & one downstream of the collider e^+e^- IP.

Reminder: We want to do precision physics Thus, we **need** precise measurements of the beam polarisation.

Hoping to achieve:
$$rac{d\mathcal{P}}{\mathcal{P}}=0.25\%$$
 per polarimeter

Together with the polarisation measurement from annihilation data (which will be much slower), the polarimeters will provide the necessary redundancy and complimentarity!

Overview Design & Simulation Construction Testbeam Measurements Cherenkov Detector for ILC Polarimetry

Daniela Käfer

Summary & Outlook

DESY

Design & Simulation

Cherenkov Detector Requirements

Design & Simulation

- Beam stay clear (upstream: 2 cm; downstream: 15 cm)
- Tapered beam pipe & thin exit-window to avoid wake fields
- Homogenous light response to the flux of Compton-scattered e⁻ Cher.Rad. is independent of e⁻ energy (for relativistic e⁻ with $\beta \approx 1$)

$$dN^{\gamma} = 2\pi \alpha \left(1 - \frac{1}{n^2 \beta^2}\right) \frac{d\lambda}{\lambda^2} d\ell,$$

- $N^{\gamma}: \text{ number of photons}$
- ℓ : radiator length

Testbeam Measurements

- α : fine structure constant
- Thus: $N^\gamma \propto \, N(e^-)$ per det. channel $\,\,\Rightarrow\,\, N^\gamma \propto \,\ell$ (U-basis)
- ▷ high reflectivity in a wide wavelength range ($1/\lambda^2$ spectrum), especially at low wavelengths: $\lambda \approx 200 350$ nm
- smooth and planar inner surfaces
- $\triangleright\$ channel geometry $\leftrightarrow\$ illuminate photodetector homogeneously
- Gas- and light-tightness of the entire detector system

- Robustness with respect to backgrounds avoid Cher.Rad. from low energetic e⁻ (beam gas/halo, SR-pairs) → radiator gas with high Cherenkov threshold (MeV-regime) place PDs well outside the (x, z)-plane (SR-fan) → detector layout
- **Calibration system** on the front U-leg use LEDs (or laser light?) to cross-check/control the photodetector linearity independent of e⁻-beam
- Thin walls between channels
 Polarisation measurement relies on detecting a spatial distribution
 → need closely spaced channels with small cross sectional area
 → thin inter-channel walls
- Adjustable detector position with respect to the e⁻-beam
 - \rightarrow moveable along the x and y-axis; tiltable about all three axis

Need PMs sensitive to blue – even ultraviolet ($\lambda < 300$ nm) – light!

Reflectivities were measured using a modified transmission spectrometer. 4 blocks of diamond-cut aluminium (from IExpP, Univ. Hamburg), and a 0.15 mm thin piece of milled aluminium foil (from GOODFELLOW).

- Length of the U-basis: 150 mm
- Height of both U-legs: 100 mm
- Two aluminum channels made of diff. Al-qualities:
 - 3 outer ch.-walls: $R\gtrsim 85\%$
 - 1 dividing wall: $R \gtrsim 36\%$
- Surrounding box is also filled with Cher.-gas C₄F₁₀

Find key figures: photon yield/electron, average number of reflections, possible asymmetries (due to geometry or used materials)

- Used physics processes:
 - electrons (e^{\pm}) : multiple scattering, ionisation, bremsstrahlung, annihilation
 - **muons (\mu^{\pm}):** multiple scattering, ionisation, bremsstrahlung, pair production

 - others particles: multiple scattering, hadron ionisation
- \bullet Optical processes: relevant for $\lambda \gg d_{\rm \, atoms}$ of the surface material
- \bullet Boundary processes: take place at surfaces betw. different materials \rightarrow causing reflection, refraction, and absorption of photons

Design & Simulation

Testbeam Measurements

Channel Illumination (right-hand side)

On average only one reflection under 'glancing angle' on the walls!

Design & Simulation

Construction

Testbeam Measurements

Summary & Outlook

Light Intensity at PD cathode (Sim.)

Daniela Käfer

Sep.29-Oct.3 2009

Prototype Design & Testbeam Measurements

 $I_{x,z}^+$ ($I_{x,z}^-$): Light intensity in the left/upper and (right/lower) channel half

Construction Phase

Outer dimensions of the inner channel structure: L×W×H : $178.5 \text{ mm} \times 37 \text{ mm} \times 114.25 \text{ mm}$

CAD illustration of the inner channel structure located inside the box base body:

- ▷ ground plate,
- inner boundary walls,
- ▷ outer side boundary walls,
- ▷ and outer base wall.

Technical drawing for the assembly of the prototype box:

- Box base body: cut from a solid aluminum block L×W×H : 230 mm × 90 mm × 150 mm, to easily accomodate the inner channel structure (with 178.5 mm × 37 mm × 114.25 mm)
- Inner structure: manufactured from high-purity aluminum The Al-slabs/-bars are diamond-cut to ensure good reflectivity of at least three inner walls/ch. with: $R \gtrsim 85\%$, while milled foil (GoodFellow) makes up the thin middle wall: $R \gtrsim 36\%$. (see: reflectivity measurements)
- Assembly I: inner channel structure is placed inside the box base body and fixated by various screws
- Assembly II: a solid aluminum lid (with pressure gauge attached) is screwed to the box base body to ensure gas-tightness

Open prototype box (standing), without LED- or PM-mountings

Open prototype box (lying), with PM-mounting in foreground

Daniela Käfer

DESY

Open prototype box (standing), with LED-mounting in foreground

Closed prototype box, including the LED- & PM-mountings and a pressure gauge (left-hand side)

Testbeam Measurements

turn time: 548 ns, **beam structure**: 274 buckets, one every 2 ns **Continuous extraction over 4 s**, (cycle time: 5.1 s, refill/acc: 1.1 s)

2 ns	bunch repetition rate	numerous e [–] passing simult.
10200 pA	adj. extraction current	through the detector U-basis
$12 \mathrm{mm}$	beam spot size	\Rightarrow large Cherenkov signals!

Overview

Design & Simulation

Construction

Testbeam Measurements

Summary & Outlook

Detector Setup @ ELSA

 use beam clock to gate QDC, adjustable between 100..480 ns
 ⇒ integrating over complete turn! (not resolving the 2 ns sub-structure)

Expected av. number of $e^-/turn$: (extr. current × turn time / e)

10 pA	\rightarrow	$pprox$ 30 e $^-$
200 pA	\rightarrow	$pprox$ 680 e $^-$
at ILC	\rightarrow	$pprox$ 200 e $^-$ /ch.

• prototype box installed on stage:

- \triangleright movable along x and y-axis
- ▷ tiltable about all three axis, but
- ▷ fine adjustment only about y-axis: for $|\alpha_y| < 3.0^\circ$ in steps of 0.125° (beam slope: $\alpha_x \approx 7.5^\circ - 7.8^\circ$)

Daniela Käfer

Prototype Design & Testbeam Measurements

- signals vary with e⁻ beam current low current \rightarrow less γ^{Cher} (vice versa)
- dark current (DC) rate depends on integration time / gate width
- DC consists of electronics pedestal & PM thermal noise, depending
 - ▷ primarily on bias voltage
 - ▷ not (directly) on temperature
 - ▷ or on beam conditions...
 - but: changes in beam conditions influence temp./beam backgr./etc.

⇒ Stable DC rate: none of these effects are discernible so far!

After PM exchange: adjust bias voltage \rightarrow distinguish signal & DC peak (even for low beam currents of ≈ 20 pA and keep linear response to higher beam currents.)

 using Cherenkov data itself Stuno 1640 ("fine" alignement of ILC-polarimeter will likely have to be done this way) OD 1630 [0] 1620 1620 1610 • adjust (x, y)-pos. roughly by doing coarse x- and y-scans $\alpha = (1.33 + - 0.03)^{\circ}$ Ха М • adjust α_y (tilt about y-axis) doing uncertainty: 2.2% 1590 various x-scans at different α_{y} after adjustment: $\alpha \approx 1.35^{\circ}$ 1580 $\triangleright N(\gamma^{\text{Cher}}) \propto \ell^{\text{ch}}$ 1570 \triangleright tilt \rightarrow diagonal beam path 0.0 -2.0-1.010 \rightarrow less Cherenkov photons... Tilt α [degree]

Turnable base plate + above method: $\Delta \alpha_y \gtrsim 3^\circ \rightarrow \Delta \alpha \lesssim 0.1^\circ$

Channel distance & width agree well with the nominal values!

MAPM: no plateau visible contrary to what is observed in SAPM-data \rightarrow cause unkown Assumption: ellipsoidal elongated beam profile \rightarrow currently being investigated

Channel distance & width, arithmetic mean (different methods): $\Delta x \approx 8.6 \text{ mm}$ (nominal: 8.8 mm) and $w_{ch} \approx 7.8 \text{ mm}$ (nominal: 8.5 mm)

Data confirms Sim: highest light intesity opposite beam entry point!

Height difference: inter-ch. \leftrightarrow anode grouping; intra-ch. \leftrightarrow anode sensitivity? Intersection points of same-side anodes (A4+7, A5+6) \leftrightarrow possibly residual tilt about y

Channel height arithmetic mean: $w_{ch} \approx 8.2 \text{ mm}$ (nominal: 8.5 mm)

Data confirms Sim: highest light intesity opposite beam entry point!

Height difference: intra-ch. \leftrightarrow anode sensitivity? (as for *x*-scan data) Intersection points of same-side anodes (A4+5, A7+6) \leftrightarrow possibly residual tilt about *x*, or *z*

Both asymmetries are calculated in the exact same way as the simulated ones. diff. slope \leftrightarrow residual tilt α_y , or α_z both affect left-right symmetry or due to elongated beam profile

Data confirms Sim: important characteristics are very similar ! \Rightarrow asymmetry data even usable as additional alignment information

Conclusions & Outlook

Design & Simulation

- Prototype Cherenkov detector completed in February 2009 (two testbeams @DESY, Hamburg (not shown), one @ELSA, Bonn)
- An optical simulation has been developed based on GEANT4 (further tuning using recent testbeam data)
- Successful 2-week testbeam period @ELSA in Bonn
 - ▷ first analysis results are very promising
 - $\triangleright\;$ data shows a behaviour as expected from simulation
 - full-fledged analysis of all data is in progress...
 and expected to advance the understanding of the prototype detector, as well as improve the design of the ILC Cherenkov detector
- ILC Cherenkov detector needs more design & engineering work:
 - $\triangleright \ \ \text{mechanical stability/robustness} \leftrightarrow \text{extremely thin inter-channel walls}$
 - $\triangleright~$ gas system: separate for each channel \leftrightarrow one for all channels

Testbeam Measurements

