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Task

 Possible pumping schemes to provide the required vacuum 

 Required vacuum (Maruyama):
 10-8 Torr at RT => 3.21014 molecules/m3

 Gas composition 

 Ion induced pressure instability
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What was done in past

 Number of technical solutions were discussed at IRENG07 

on 17th – 19th September 2007.

 Y. Suetsugu (KEK): A Basic Design of IR Vacuum 

system

 O. Malyshev (ASTeC): IR Vacuum Systems (First 

thoughts)

 WebEx meeting on 2nd October 2009

 The suggested solutions has questions to the detector 

design people
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Problems (or questions) for solutions 1 and 2

 Is bakeout to 150C in-situ is possible?

 ASTeC NEG coating can be activated at 150C

 Uncoated parts - to remove water and reduce outgassing

 What is maximum tolerable bakeout temperature?

 What available gap for bakeout tapes.

 Possible solution is a thin bakeout coating developed at 

ASTeC on outer part of vacuum vessel.   

 0.2-mm thick

 Self regulated power output (‘programmed’ to selected 

highest temperature)

 Can be optimised to AC (6-240V) or DC (6-12-24 V) 

power supply
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Possible solutions: solution 3 (no bakeout) – Y. Suetsugu
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Problems (or questions) for solutions 3 – Y. Suetsugu
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Possible solutions: solution 4 (no bakeout) – CERN

Same as solution 3 but a 

sputter ion pump in the 

detector solenoid field in stead 

of NEG strips.

Advantages: 

- pumps all gases while NEG 

does not pump CxHy and noble 

gases

Disadvantage:

- does not work then solenoid 

is off

- has to be designed



No space for a pump - What about NEG coating?
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A slide from 

a previous talk 

by Dr. Maruyama
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Other possibilities

 Low outgassing coating, ex: Ti, Au, etc.



 Ex-situ bakeout/activation 

 It could be quite efficient when

 Either no went to air (like at SLS in Switzerland)

 Or short (5-10 min.) went (filling with dry N2) quick 

assembly and pump down (like at DLS in UK)



Assumption for gas density calculation

 Ougassing a week after bakeout (used for TPMC 

calculation on the following slide):

 H2: 10-11 mbar·l/(s·cm2)

 CO: 10-12 mbar·l/(s·cm2)

 Without bakeout after a week pumping 

(Suetsugu):

 H2: 2·10-10 mbar·l/(s·cm2)

 CO: 2·10-11 mbar·l/(s·cm2)
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Photon and e+/e- stimulated desorption:

The ‘critical’ energy of photon near IR is c ~ 0.5 MeV.

Photon flux =~71010 /(sm) (calculated by Dr. Takashi Maruyama)

 Estimated pressure raise due to photon stimulated 

desorption is much larger than thermal:

 P(H2) = 1.510-8 Torr; P(CO) = 310-9 Torr

 e+/e- flux 10 particle/s (per metre or what?) 

 e+/e- stimulated desorption may lead to an order of 

magnitude larger pressure raise.

=> these tubes must be also NEG coated and activated
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QD0 cold bore

 Gas density with no beam is 
 negligible at T=2 K (except for He)

 too high at T=4.5 K (equilibrium H2 pressure for >0.1ML).

 Gas density with a beam increase due do:
 Photon, electron, ions, lost positron and electron 

stimulated desorption inside the cold bore. 

 Gas from the IR vacuum vessel and connecting tube!

 Desorbed gas cryosorbed and accumulated on the 
cryogenic walls 

 Accumulated molecules will be desorbed by photon, 
electron, ions, lost positron and electron.

 => Gas density is growing with time
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Cold bore – behaviour under SR

 Experiment was performed 

with photons with c = 300 

eV

 Initial gas density will be 

quite good 

 But after some dose there 

will be a pressure bump in 

a cryogenic vacuum 

chamber irradiated with 

photons and electrons



Gas density inside SiD and near IR without NEG coating
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Required vacuum:     10-8 Torr at RT => 3.21014 molecules/m3



Gas density inside SiD and near IR without NEG coating
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Required vacuum:     10-8 Torr at RT => 3.21014 molecules/m3

e+/e- stimulated desorption is not included as some clarification is required 
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General questions (listed by Y. Suetsugu plus mine)

 The is a few possible solutions for IR vacuum system

 To choose one need to consider that the pumping system 
design depends on:

 How long we can wait after installation and after air vent 
until the pressure decreases to the allowable level.

 Days or weeks?

 Strategy of push-pull

 Whether or how often we have to exposure the IR beam 
pipe to air

 NEG coating lifetime is about 60 vents

 Warming up and cooling down scenario for QD0

 We need a typical operation pattern.



2nd October 2009

General questions

 Required pressure

 Gas spectrum depends on technical solution, temperature, 

location, etc.

 Ideally required vacuum should be given in gas density for a 

particular gas. For example:

 3.21013 H2/m
3 (hydrogen equivalent) 

 For other gases we can use the ratio of cross sections: 

 For the LHC design we used an effective H2 equivalent gas density 
given by:

 Are these coefficient correct for the ILC?

       242 2.128.74.5 COnCOnCHnHnneff 


