

Consideration on the Field Gradient and Yield toward Re-baselining in TDP2

Akira Yamamoto

To be presented at ALCPG/ILC-GDE, Oct. 1, 2009

Design Considerations for the ILC

Towards a new baseline for TDP2: an open discussion with the Detector & Physics Community

Presented by

Nick Walker for the GDE Project Management

at GDE Plenary, Albuquerque, Sept. 29

TDP R&D Plan

calendar year	20	08	 	1 1 1	200	9 ;		,	2010 :
Tech. Design Phase I									
Tech. Design Phase II		 	 	 - - - -		1			
Siting		! !		! ! !			_		
Shallow site option impact studies							d	I	
Definition of uniform site specs.		; ; ; ;		: : :				0	
Collider Design Work		: :							
Definition of minimum machine				0			_		
Minimum machine & cost-reduction studies		<u>:</u>					d		
Review TDP-II baseline		: : : :		: : :		! ! !		C	
Publish TDP-I interim report		: : : :		: : :		! ! !			
Prepare technicai specifications		! !		: :			!		
Technical design work		:	 			! ! !			

il Global Plan for SCRF R&D

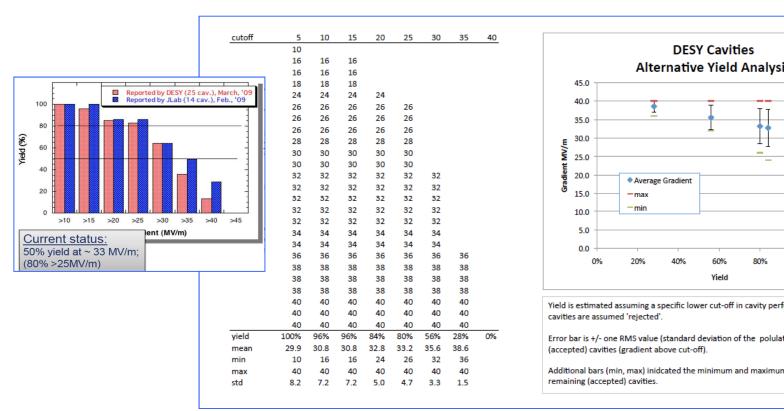
Year	07	2008	20	09	20	10	2011	2012		
Phase	TDP-1						TDP-2			
Cavity Gradient in v. test to reach 35 MV/m	\supset	>> Yield 50% >>					> Yield 90%			
Cavity-string to reach 31.5 MV/m, with one-cryomodule		Global effort for plug-compatible string (DESY, FNAL, INFN, KEK)								
System Test with beam		FLASH (DESY) NML (FNAL) STF2 (KEK)					NML (FNAL)			
acceleration							EK)			
Preparation for Industrialization			Mass Production Technology R&D							

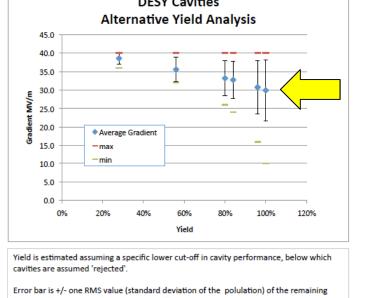
Comparison of 1st and 2nd Pass Yields

Cavity Gradient Study - Summary

- Yield at 35 MV/m (by leading/qualified vendors)
 - 22 % at 1st pass (statistics 22)
 - 33 % at 2nd pass (statistics 21, as of 09-07))
 - DESY prod-#4 to be added, (stat. to be ~ 30)
- New yield statistics (w/ potential vendors)
 - AES: to be counted from #5 (to be confirmed)
 - MHI: to be counted from #5 (to be confirmed)
- Limited 'Prod. Y.' statistics to be understood
 - 'Production Yield': to evaluate readiness of industrialization/production-stage, and cost
 - 'Cavities for HG research': necessary to be separately counted.

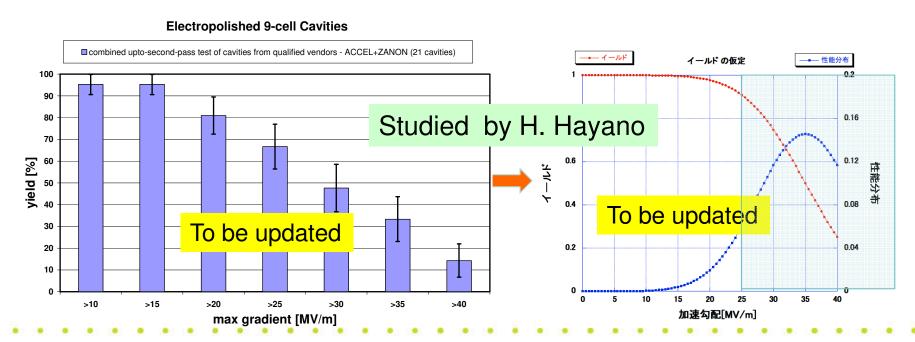
Progress and Prospect of Cavity Gradient Yield Statistics.


	PAC-09 Last/Best 2009-05	FALC 1 st Pass 2009-07	ALCPG 2nd Pass 2009-10	To be added (2009-11)	Coming Prod. Y. (2010-06)	Further, Research cavities
DESY	9 (AC) 16 (ZA)	8 (AC) 7 (ZA)	14 (AC/ZA)	10 (Prod- 4)	5	8 (large G.)
JLAB FNAL/A NL/Corn ell	8 (AC) 4 (AE) 1 (KE-LL5) 1 (JL-2)	7 (AC)	7 (AC)	~ 5 (AE)	12 (AC) 6(AES) 6(NW) -x	X + a (including large-G)
KEK/IH EP				5 (MH)	2 (MH)	1 (LL) ++ a 1 (IHEP)
Sum	39	22	21	20	31 - x	10 + x + a
G-Sum				~ 41	72 - x	


We may need to have separate statistics for 'production' and for 'research'

A New Approach Average Gradient Yield

Suggested by Nick Walker



Additional bars (min, max) inidcated the minimum and maximum gradients in the

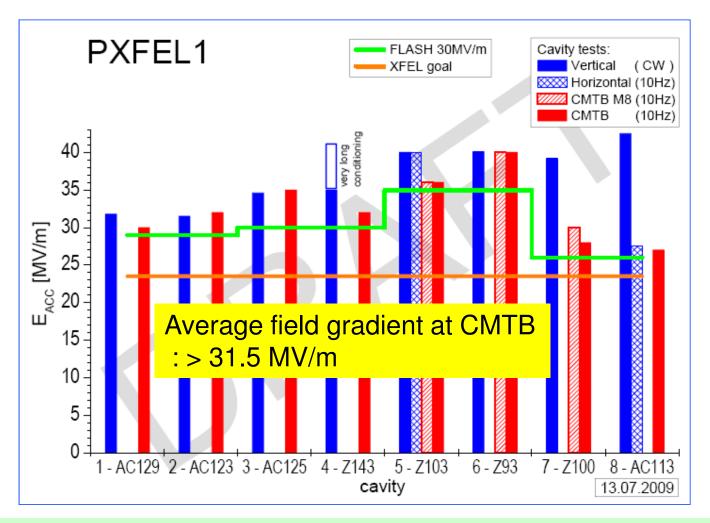
Data based on the plot presented in PAC, Vancouver, >> Average gradient reached ~ 30 MV/m

Field Gradient Distribution to be accepted in ILC Operation

- A model (to be discussed)
 - Operational field gradient: 31.5 MV/m +/- 20 %
 - Maximum field gradient (in VT): 35 MV/m +/- 20 %
 - 'Production yield' may be re-considered, with the distribution taken into account.

A Proposal for Re-baseline Cavity Gradient and Yield, in TDP-2.

- Operational field of <31.5 MV/m> (@ Q0 = 1E10)
 - Keep it, as the 'averaged field gradient' in the ILC operational condition with cryomodule string, and
 - Accept the gradient distribution of (~ 20 % (b/w 25 38 MV/m) in operation (note: exact number to be further well discussed)
 - See the recent progress at DESY PXFEL cryomodule test result
- Maximum gradient of 35 MV/m (@ Q0 = 8E9) in vert. test
 - keep our R&D goal of the yield of 90 % at 35 MV/m, as a target, and
 - Recognize that the yield may be acceptable to be ~ 50 % with the +/-20 % distribution (i. e., b/w 28 and 42 MV/m) of the gradient.


Production Yield

- the yield of 90 % at the 28 MV/m, and 50 % at 35 MV/m may meet the the ILC operational field gradient with a margin of 10 %, by taking the above model with the distribution of +/- 20 %.

ilc

: S1 Goal: Reached at DESY PXFEL1

reported by H. Weise, at SRF-09

Note: DESY prepared cavities and assembled with the cryomodule cold mass contributed by IHEP for XFEL prototype Gradient toward TDP2

Accelerating Gradient toward Re-Baselining in TDP-2

- Parameter with largest cost-leverage
 - Major focus of global R&D effort ('S0')
- On-going database effort to evaluate 'yield'
 - Cost implications
- For TDP-2 baseline, unlikely to change current Working Assumption (31.5 MV/m)
- Change of gradient at later stage only affects length of linacs
 - At 10% level easily scalable
 - No other subsystems affected
- New approach to 'yield' being evaluated, supporting larger spread in cavity performance
 - Average still (currently) 31.5 MV/m
 - Up to 20% spread is probably acceptable

Progress of Yield Statistics

	PAC-09 Last/Best 09-05	FALC 1 st Pass 09-07-07	ALCPG 2nd Pass 09-10-01	To be added (09-10)	Coming Prod. Y. (10-06)	Coming Research cavities
DESY	9 (AC) 16 (ZA)	8 (AC) 7 (ZA)	14 (AC/ZA)	10 (Prod- 4)	5	8 (large G.)
JLAB FNAL/A NL/Corn ell	8 (AC) 4 (AE) 1 (KE-LL5) 1 (JL-2)	7 (AC)	7 (AC)	~ 5 (AE)	12(AC) 6 (AE) 6(NW) -x	x y (large-G)
KEK/IH EP				4 (MH)	3 (MH)	1 (LL)
Sum	39	22	21		32 - x	9 + x + y
G-Sum				40	72 - x	81 + y

We may need to have separate statistics for 'production' and for 'research' The number of resarch purpose cavities still to be