Compton Experiment at the ATF ~a status report~

Proposed telescopic, passive, resonant external cavity

Proposed telescopic, passive, resonant external cavity

LUCX Laser Undulator Compact X rayser

Beam energy and energy spread measurement

ICT & Faraday cup: Beam current monitor

PRM: Beam Profile Monitor

OTR target or Al₂O₃ (Cr³⁺ doped)

Pulsed Laser Cavity

The pulsed laser cavity is installed at the collision point.

100 Bunch generation by LUCX

Table 5.1: Comparison of the number of produced X-rays

	Experiments	CAIN
Within Collimator	1.65×10 ² Photons/Train	2.0×10 ² Photons/Train
Total Number	0.93×10 ⁴ Photons/Train	1.13×10 ⁴ Photons/Train

Quantum Beam Project supported by JST

Development for Next Generation Compact High Brightness X-ray

Optical Cavity for Laser-Compton

Higher laser power

 L_{cav} = n $\lambda/2$, ΔL <nm laser for pulse stacking ->more enhancement the more precision Laser should be focused for high power density Efficient laser-Compton scattering

 $\Delta T < ps$

Accommodate laser cavity in the accelerator

Two Prototype Cavities

2-mirror cavity (Hiroshima / Weseda / Kyoto / IHEP / KEK)

moderate enhancement moderate spot size simple control

demonstration of γ ray gen. accum. exp. w/ cavity and acc.

4-mirror cavities w/LAL

high enhancement small spot size complicated control

intense γ ray generation

2 MIRROR CAVITY STAUS

Experimental R/D in ATF

Hiroshima-Waseda-Kyoto-IHEP-KEK

Pulse Make a fist prototype prototype 2-mirror cavity

 $L_{cav} = 420 \text{ mm}$

Put it in ATF ring

Result

We detected 27 gamma-rays / bunch train. generation 60 gamma-rays / train to all angle.

60×2.16MHz ~ 1.2 × 10⁸ [gamma / second]

AFTER TILC09

- One of the Mirror was replaced with the higher reflectivity one
 - **-99.6% -> 99.9%**
 - power enhancement
 - 250 -> ~750
 - more precise controll required (~0.1nm)
- ► Status of the cavity w/ new mirror
 - -Finess ~2000 with feedback on before vacuum on

99.6%

99.9%

- -now in preparation for beam
- hope to get 3 times more photons by the end of the year

4 MIRROR CAVITY STATUS

4 MIRROR CAVITY STATUS

March 2009

August 2009

2D configuration

2D 4mirror cavity has astigmatism.

3D configuration

go to 3D config. to avoid astgmatism

position in the cavity

R&D of 4 mirrors cavity started at KEK (Reported TILC09)

Honda

prototype 4 mirror cavity Constructed

tuning mechanizm

Objective: to establish method of:
mirror alignment, control cavity length
→ feed back to the beam compatible cavity

Prototype cavity on the optical table

status of initial tests

resonance of the cavity with injecting laser observed

polarization property of the 3 dimensional 4 M ring cavity

► circular polarization state get geometrical phase

$$\frac{\vec{k} \cdot \vec{\sigma}}{|\vec{k} \cdot \vec{\sigma}|} |\psi_{\pm}\rangle = \pm |\psi_{\pm}\rangle \quad |\psi_{\pm}\rangle \rightarrow \exp(\pm i\Gamma) |\psi_{\pm}\rangle$$

For linearly polarized photon, it is rotation of the direction of the polarization

$$\begin{pmatrix} \psi_s \\ \psi_p \end{pmatrix} \rightarrow \begin{pmatrix} \cos(\Gamma) & \sin(\Gamma) \\ -\sin(\Gamma) & \cos(\Gamma) \end{pmatrix} \begin{pmatrix} \psi_s \\ \psi_p \end{pmatrix}$$

3D 4M cavities resonate only for left or right handed circulate polarization at defferent cavity length

two peaks

two separated resonant peaks

each corresponds to left or right handed polarization

•3D cavity only resonates with circular polarization due to geometric phase

Useful to:

- generate circularly pol. γs
- fast switching

Summary

- ► 2 mirror cavity to demonstrate photon generation and to accumulate experience w/ beams
 - -x250 laser power, $27\gamma/crossing$ at TILC09
 - -enhancement ~750 to 1000 this year
- ► multiple projects for laser-Compton scattering are underway → all of them will use 4M ring cavity
 - -Polarized positron source
 - -X ray generation
- ► 4 mirror ring cavity for higher enhancement and small spot size
 - -first prototype at KEK and being tested
 - installation of LAL cavity being ready

4-mirror ring cavity

Equivalent Optics of the 4-mirror Cavity

tolerance: 4-mirror = 100×2 -mirror

2D configuration

3D configuration

Tolerance of 2-mirror cavity

Concentric Configuration and Confocal Configuration

2-mirror cavity

R1=R2=L/2waist waist waist 1/2 1/2

concentric

4-mirror cavity

data summary

bunch /train	current [mA]	Stacked Laser power[W]	γs/train	expectation	normarized γs/A/W
1	2.2	437 ± 2	5.4 ± 0.3	4.9 ± 0.3	5.6 ± 0.3
5	4.7	432 ± 2	10.6 ± 0.1	10.5 ± 0.5	5.3 ± 0.1
10	8.5	470 ± 2	19.0 ± 0.1	21±1	4.8 ± 0.1
15	11	498 ± 2	26.9 ± 0.1	29 ± 1	4.8 ± 0.1

Normalized γ yield seems to decrease as # bunches/train goes up

Bunch (size, timing) fluctuation in the ATF suspected