

Performance Study of Pair-monitor (for ILD)

Yutaro Sato Tohoku Univ. 1st Oct. 2009

Pair-monitor

Pair-monitor is a silicon pixel detector to measure the beam profile at IP.

- The distribution of the pair B.G. is used.
 - The same charges with respect to the oncoming beam are scattered with large angle.
 - The scattered particles have information on beam shape.
- The pair-monitor is required to measure the beam size with 10% accuracy.

Contents

We have developed

performance study of the pair-monitor.

- development of the readout ASIC for the pair-monitor.

Contents

- The combined analysis with BeamCal was performed.
 - Pair-monitor : silicon pixel detector to measure hit counts
 - BeamCal : calorimeter to measure energy deposit
- Beam parameters $(\sigma_x, \sigma_y, \Delta_y)$ were reconstructed using the Taylor matrix method (second order).

Simulation setup

Simulation setup

- CM energy : 500GeV
- Nominal beam size $(\sigma_x^{0}, \sigma_y^{0}, \sigma_z^{0}) = (639nm, 5.7nm, 300 \,\mu m)$
- Tools : CAIN (Pair background generator)

Jupiter (Tracking emulator)

- Magnetic field : 3.5 T + anti-DID
- Pair-monitor is located in front of the BeamCal.
- Scattered e⁺ was studied.

Matrix method for reconstruction

The measurement variables are used for the reconstruction.

Measurement variables

8 measurement variables were defined.

Spread of pair B.G. distribution

The spread of the pair B.G. distribution changes, according to the transverse momentum of the pairs.

ilr

Measurement variables were defined.

R_{max} : Radius to contain 97.5% of all the hits. (Pair-monitor)
R_{ave} : Average radius weighted by energy deposit. (BeamCal)

$$R_{ave} \equiv \frac{\sum R_i \times Edep_i}{\sum Edep_i} \quad (R_i \text{ is the radius of the i-th cell })$$

Variable : R_{max} and R_{ave}

 \mathbf{R}_{max} and \mathbf{R}_{ave} were obtained with various beam parameters.

ilr

IIL

7

Scattered direction at IP

Scattered direction at IP changes with the beam parameters.

φ distribution at IP

ilr

İİL

The measurement variables were defined from the pair-monitor.

$$N_{D1} / N_{all}$$
 for vertical beam size (σ_y)
 N_U / N_{D2} for relative offset (Δ_y)

Variable : N_{D1}/N_{all}, N_U/N_{D2}

 N_{D1}/N_{all} and N_U/N_{D2} were obtained with various beam parameters.

ilr

IIL

Variable : 1/N_{all}, 1/Edep_{all}

The total number of hits (N_{all}) and total energy deposit $(Edep_{all})$ have information on the beam parameters.

> $1/N_{all}$ and $1/Edep_{all}$ change as a function of the σ_x and σ_y .

Reconstruction of beam parameters

8 measurement variables were prepared.

- Pair-monitor ... R_{max} , N_{D1}/N_{all} , N_U/N_{D2} , $1/N_{all}$
- **BeamCal** ... R_{ave} , N_D/N_{all} , N_U/N_D , $1/Edep_{all}$

Results (σ_v)

:lr

IIL

Results $(\sigma_x, \sigma_y, \Delta_y)$

The accuracy of all the beam parameters is as follows.

	Pair-monitor	BeamCal	Pair-monitor + BeamCal
$\sigma_{\rm x}$	3.2 %	4.1 %	2.8 %
$\sigma_{\rm y}$	10.1%	15.6 %	8.6 %
$\Delta_{\rm y}$	8.6 %	9.4 %	7.4 %

The combined analysis provides more precise measurement for all the beam parameters.

Summary

- Pair-monitor and BeamCal measure the beam profile at IP.
 - Pair-monitor : silicon pixel detector to measure the hit count.
 - BeamCal : calorimeter to measure the energy deposit.
- The combined analysis with BeamCal was performed.
- Beam parameters (σ_x , σ_y , Δ_y) are reconstructed using the Taylor matrix method (second order).

Measurement accuracy

	Pair-monitor	BeamCal	Pair-monitor + BeamCal
σ_{x}	3.2 %	4.1 %	2.8 %
σ_{y}	10.1%	15.6 %	8.6 %
$\Delta_{\rm y}$	8.6 %	9.4 %	7.4 %

Backup

Matrix method for reconstruction

• Inverse matrix of a non-square matrix A is defined as follows.

$$A^{-1} \equiv \left(A^T A\right)^{-1} A^T$$
$$\Rightarrow \underline{A}^{-1} A = \left(\underline{A}^T A\right)^{-1} \underline{A}^T A = 1$$

Azimuthal distribution

The measurement variable was defined. $\rightarrow N_U/N_{D2}$

Variable : N_{D1}/N_{all}, N_U/N_{D2}

Variable : 1/N_{all}, 1/Edep_{all}

Result (σ_x)

Result (Δ_y)

