Performance Study of Pair-monitor (for ILD)

Yutaro Sato
Tohoku Univ.
$1{ }^{\text {st }}$ Oct. 2009

Pair-monitor

Pair-monitor is a silicon pixel detector to measure the beam profile at IP.

- The distribution of the pair B.G. is used.
- The same charges with respect to the oncoming beam are scattered with large angle.
- The scattered particles have information on beam shape.
- The pair-monitor is required to measure the beam size with 10% accuracy.

Contents

We have developed

- performance study of the pair-monitor.
- development of the readout ASIC for the pair-monitor.

Contents

- The combined analysis with BeamCal was performed.
- Pair-monitor : silicon pixel detector to measure hit counts
- BeamCal : calorimeter to measure energy deposit
- Beam parameters ($\sigma_{x}, \sigma_{y}, \Delta_{y}$) were reconstructed using the Taylor matrix method (second order).

Simulation setup

Simulation setup

- CM energy : 500 GeV
- Nominal beam size $\left(\sigma_{\mathrm{x}}{ }^{0}, \sigma_{\mathrm{y}}{ }^{0}, \sigma_{\mathrm{z}}{ }^{0}\right)=(639 \mathrm{~nm}, 5.7 \mathrm{~nm}, 300 \mu \mathrm{~m})$
- Tools : CAIN (Pair background generator)

Jupiter (Tracking emulator)

- Magnetic field : 3.5 T + anti-DID
- Pair-monitor is located in front of the BeamCal.
- Scattered e^{+}was studied.

Matrix method for reconstruction

The measurement variables are used for the reconstruction.
The measurement variables can be expanded by the Taylor expansion.
Measurement variable (M) Beam parameter ($\mathbf{(}$)

The beam parameters are reconstructed by the inverse matrix.

$$
\mathbf{X} \equiv\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\Delta_{y}
\end{array}\right)=\left[\mathbf{A}+\mathbf{X}^{\mathrm{T}} \mathbf{B}+\cdots\right]^{-1} \mathbf{M}
$$

Measurement variables

8 measurement variables were defined.

Spread of pair B.G. distribution

The spread of the pair B.G. distribution changes, according to the transverse momentum of the pairs.

Measurement variables were defined.
$\mathbf{R}_{\text {max }}$: Radius to contain 97.5% of all the hits. (Pair-monitor)
$\mathbf{R}_{\text {ave }}$: Average radius weighted by energy deposit. (BeamCal)

$$
R_{\text {ave }} \equiv \frac{\sum R_{i} \times E d e p_{i}}{\sum E d e p_{i}}\left(\mathrm{R}_{\mathrm{i}} \text { is the radius of the } \mathrm{i} \text {-th cell }\right)
$$

Variable : $\mathbf{R}_{\text {max }}$ and $\mathbf{R}_{\text {ave }}$

$\mathbf{R}_{\text {max }}$ and $\mathbf{R}_{\text {ave }}$ were obtained with various beam parameters.

Horizontal beam size $\left(\sigma_{\mathrm{x}}\right)[\mathrm{nm}]$
$\mathbf{R}_{\mathrm{ave}}[\mathrm{cm}]$ v.s.
Horizontal beam size $\left(\sigma_{\mathrm{x}}\right)[\mathrm{nm}]$

Horizontal beam size $\left(\sigma_{\mathrm{x}}\right)[\mathrm{nm}]$
$R_{\max }$ and $R_{\text {ave }}$ decrease for larger horizontal beam size $\left(\sigma_{x}\right)$.

Scattered direction at IP

Scattered direction at IP changes with the beam parameters.
φ distribution at IP

The measurement variables were defined from the pair-monitor.
$\mathbf{N}_{\mathrm{D} 1} / \mathbf{N}_{\text {all }}$ for vertical beam size $\left(\sigma_{\mathrm{y}}\right)$
$\mathbf{N}_{\mathrm{U}} / \mathbf{N}_{\mathrm{D} 2}$ for relative offset $\left(\Delta_{\mathrm{y}}\right)$

Variable : $\mathbf{N}_{\mathrm{D} 1} / \mathbf{N}_{\mathrm{all}}, \mathbf{N}_{\mathrm{U}} / \mathbf{N}_{\mathrm{D} 2}$

$\mathbf{N}_{\mathrm{D} 1} / \mathbf{N}_{\mathrm{all}}$ and $\mathbf{N}_{\mathrm{U}} / \mathrm{N}_{\mathrm{D} 2}$ were obtained with various beam parameters.
$\mathrm{N}_{\mathrm{D} 1} / \mathrm{N}_{\mathrm{all}}$ v.s.
Vertical beam size $\left(\sigma_{y}\right)[\mathrm{nm}]$

Vertical beam size $\left(\sigma_{y}\right)[\mathrm{nm}]$

$$
\text { Vertical beam size }\left(\sigma_{\mathrm{y}}^{14}\right)[\mathrm{nm}]
$$

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=639[\mathrm{~nm}] \\
& \sigma_{\mathrm{x}}=702.9[\mathrm{~nm}] \\
& \sigma_{\mathrm{x}}=798.75[\mathrm{~nm}] \\
& \sigma_{\mathrm{x}}=958.5[\mathrm{~nm}]
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\mathrm{y}}=0 \\
& \Delta_{\mathrm{y}}=0.2 \\
& \Delta_{\mathrm{y}}=0.4
\end{aligned}
$$

$\mathrm{N}_{\mathrm{D} 1} / \mathrm{N}_{\mathrm{all}}$ and $\mathrm{N}_{\mathrm{U}} / \mathrm{N}_{\mathrm{D} 2}$ change as a function of the beam parameters.

Variable : $1 / \mathbf{N}_{\text {all }}, 1 /$ Edep $_{\text {all }}$

The total number of hits $\left(\mathbf{N}_{\text {all }}\right)$ and total energy deposit $\left(\mathbf{E d e p}_{\text {all }}\right)$ have information on the beam parameters.

$1 / \mathrm{N}_{\mathrm{all}}$ and $1 / \mathrm{Edep}_{\text {all }}$ change as a function of the σ_{x} and σ_{y}.

Reconstruction of beam parameters

8 measurement variables were prepared.

- Pair-monitor ... $\mathrm{R}_{\text {max }}, \mathrm{N}_{\mathrm{D} 1} / \mathrm{N}_{\text {all }}, \mathrm{N}_{\mathrm{U}} / \mathrm{N}_{\mathrm{D} 2}, 1 / \mathrm{N}_{\text {all }}$
- BeamCal ... $\mathrm{R}_{\text {ave }}, \mathrm{N}_{\mathrm{D}} / \mathrm{N}_{\text {all }}, \mathrm{N}_{\mathrm{U}} / \mathrm{N}_{\mathrm{D}}, \quad 1 / \mathrm{Edep}_{\text {all }}$

Matrix components were determined by the fitting with the second order polynomials

Tensor of the second order term

Beam parameters were reconstructed.

$$
\mathbf{X} \equiv\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\Delta_{y}
\end{array}\right)=\left[\mathbf{A}+\mathbf{X}^{\mathrm{T}} \mathbf{B}\right]^{-1} \mathbf{M}
$$

Results ($\sigma_{\mathbf{y}}$)

The performance was compared among three cases.

The combined analysis provides more precise measurement.

Results $\left(\sigma_{x}, \sigma_{y}, \Delta_{y}\right)$

The accuracy of all the beam parameters is as follows.

	Pair-monitor	BeamCal	Pair-monitor + BeamCal
σ_{x}	3.2%	4.1%	2.8%
σ_{y}	10.1%	15.6%	8.6%
Δ_{y}	8.6%	9.4%	7.4%

The combined analysis provides more precise measurement for all the beam parameters.

Summary

- Pair-monitor and BeamCal measure the beam profile at IP.
- Pair-monitor : silicon pixel detector to measure the hit count.
- BeamCal : calorimeter to measure the energy deposit.
- The combined analysis with BeamCal was performed.
- Beam parameters ($\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \Delta_{\mathrm{y}}$) are reconstructed using the Taylor matrix method (second order).

Measurement accuracy

	Pair-monitor	BeamCal	Pair-monitor + BeamCal
σ_{x}	3.2%	4.1%	2.8%
σ_{y}	10.1%	15.6%	8.6%
Δ_{y}	8.6%	9.4%	7.4%

The combined analysis can provides more precise measurement.

Ir
IIL

Backup

Matrix method for reconstruction

- Inverse matrix of a non-square matrix A is defined as follows.

$$
\begin{aligned}
& A^{-1} \equiv\left(A^{T} A\right)^{1} A^{T} \\
& \Rightarrow A^{-1} A=\left(A^{T} A\right)^{-1} A^{T} A=1
\end{aligned}
$$

$\mathbf{R}_{\text {max }}$ and $\mathbf{R}_{\text {ave }}$

$$
R_{\text {ave }} \equiv \frac{\sum R_{i} \times \text { Edep }_{i}}{\sum E d e p_{i}}
$$

(R_{i} is the radius of the i -th cell)

Azimuthal distribution

The measurement variable was defined. $\rightarrow \mathbf{N}_{\mathrm{U}} / \mathrm{N}_{\mathrm{D} 2}$

Variable : $\mathbf{N}_{\mathrm{D} 1} / \mathbf{N}_{\mathrm{all}}, \mathbf{N}_{\mathbf{U}} / \mathbf{N}_{\mathrm{D} 2}$

Variable : $\mathbf{1 /} \mathbf{N}_{\text {all }}, 1 /$ Edep $_{\text {all }}$

Result (σ_{x})

Result (Δ_{y})

