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Vibration studies for SiD
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Sub-nanometric stability of the focusing system is required to maintain 
the luminosity to within a few percent of the design value.

Ground motion is a source of vibrations which would continuously 
misaligning the focusing elements.

The design of the support of the QD0 is a fundamental issue

Introduction
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Luminosity feedback systems and stability

Two Luminosity Feedback systems are implemented in ILC :

A 5 Hz to control the orbit in the BDS (low frequency)

A Intra-train system to address ground motion and 
mechanical disturbances (high frequency~1000 Hz)

The mechanical stability requirements of the QD0 are set by the 
capture range of the IP fast feedback, as written in the 
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capture range of the IP fast feedback, as written in the 
“Functional Requirements” document, ILC-Note-2009-050

“ The QD0 mechanical alignment accuracy and stability after beam-based alignment and the QD0 vibration
stability requirement are set by the capture range and response characteristics [8] of the inter-bunch
feedback system.

• QD0 alignment accuracy: ± 200 nm and 0.1 µrad from a line determined by QF1s, stable over the
200ms time interval between bunch trains

• QD0 vibration stability: ∆(QD0(e+)-QD0(e-)) < 50 nm within 1ms long bunch train “



Ground vibrations measurements are available for all the major accelerators sites in form of  Power Spectrum 
Densities. Datasets available at http://vibration.desy.de

Main features :

Separation at ~few Hz between geology and human induced noise (pretty much the separation 
between the slow and fast luminosity feedback)  

Some site are quiet and some are noisy

Motion falls as 1/ω4

For a given a ground motion time history x(t), the 
PSD is defined as

i.e. PSD is the Fourier transform of the 
autocorrelation function R(0) of te signal x(t).

The main property of the PSD is that the variance 

Ground motions (A.Seryi et al.)

Human 
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Simplified PSD Models 
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Random vibrations model

X =

Ground Motion PSD Frequency Response Function

2

FRF for one d.o.f.  ⇒

M.Oriunno, SLAC ALCPG September ‘09 6

The FRF of multi degree-of-freedom system, like QD0 and SiD, is obtained a 
FEM (e.g. ANSYS)

QD0

P(f) Sy(f)H (f)2

One degree-of-freedom )()()(
2

fPfHfSy =

ANSYS



QD0 supports for ILD and SiD
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QD0 integration and movement as in SLD

Cam detail

Cryostat vacuum 
jacket 25 mm
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Random Vibration effects Metric  

Ground motion effects are usually accounted as perturbation of the 
lattice elements through the girders, the magnetic cells assumed 
point-like (rigid body)

Final Focusing element deforms along the full length under random 
vibration effects

How define the metric of the net effect of the displacement at the IP ?
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From this…. …….to this
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Ground motion through the feet



Lumped Mass element 
Solenoid + Hcal + Ecal = 700tGlobal FE Model
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3D Solid Elements for the Iron Yoke, 9000 t 3D Shell Elements for the Arch, thickness 50mm



1st Mode, 2.38 Hz 2nd Mode, 5.15 Hz 3rd Mode, 5.45 Hz

Free Vibration Mode
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4th Mode, 6.53 Hz 5th Mode, 10.42 Hz 6th Mode, 13.7 Hz

Vertical motion



Harmonic Analysis

Frequency  Response Function
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The vertical mode of resonance depends on the elasticity of the feet

To increase the resonance frequency one can :

Reduce the detector mass ->less iron->more stray field

Select a more rigid  material -> SSteel ~210GPa

Lower the height the foot -> lower the center of gravity ~ factor 2

Increase the cross section area f the foot -> thicker plate ~ factor 2

Additional supports to reduce the specific mass per foot ~ factor 2

~  factor 6- 8, i.e. fo*sqrt(8) ~ 28 Hz

Resonance mitigation

M.Oriunno, SLAC ALCPG September ‘09 17

M = ¼ of SiD mass

height
AreaYoungMod

k
⋅

=

height

M
k

f
π2
1

=

uy M=2500 tons

E=210 GPa

Height =3 m

Plate thickness =30 mm

f = 10 Hz



1.E-03

1.E-24

1.E-22

1.E-20

1.E-18

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1 10 100Hz

P
S

D
 (

m
m

2 /H
z)

Salt Mine Asse

Hera

FNAL

28 Hz

Shift of the resonance mode from 10 to 28 Hz

~ factor 2 on the r.m.s. amplitude at low freq.

~ wider range at higher freq.
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The platform

One of main concerns that triggered the stabilization studies of the final focus 
system is the effectiveness of a platform concept versus the shielding of the 
ground motions :

- Is a detector on a platform experiencing amplified, reduced or same 
levels of ground motion ?

The question is subordinate to the availability of an the engineering design of the 
platform and how the detector and the QD0s are secured on board.
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20 m18 m

2 m

Reinforced concrete Slab Four support lines for 4’000 tons each

Total mass 1800 t
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10kt Anti-seismic supports

Steel plate 30 mm at the 
bottom

Steel re-bars 16mm2



Static deformation, 1 mm
Normal mode, 43 Hz

Modal analysis
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Normal mode, 58 Hz

Normal mode, 58 Hz
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Gfy(f) transfer function through the cavern wall

Gs(f) transfer function through SiD
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Harmonic Analysis
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Ground Motion Coherence

Final Focus system vibrations would not be a problem, if there were a 
coherent ground motion. 

SLAC-SLD

CERN-LEP

Measurement at different sites show large uncorrelated ground motions for f > 1 Hz, 

PSD  1 PSD 2

PSD  3

M.Oriunno, SLAC ALCPG September ‘09 24

1.E-08

1.E-07

1.E-06

1.E-05

1 10 100Hz

r.
m

.s
. (

m
m

)

P relaltive
P absolute

Measurement at different sites show large uncorrelated ground motions for f > 1 Hz, 
between sensors placed in the cavern and at the final focus systems

Relative Ground Motion Model 
(A.Seryi)

Integrated r.m.s.

10 nm < 50 nm



Summary

We started the process to produce a model to quantify the vibration effects 
on SiD.

Preliminary results shows that supporting the QD0s from the doors in 
combination with the cavern wall is viable solution (proven in SLD)

For a random vibrating QD0, it is need to quantify the net effect of the 
random vibrating magnetic field on the final path of the beam.

The progress of mechanical design of the QD0 would allow to model the 
internal vibration of the cold mass inside the cryostat.
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We have the estimation of the resonance modes of SiD alone which helps 
in optimizing the detector supports.

Preliminary calculations of a platform show that more engineering design 
would be required to confirm the resonance modes range.

We aim to agree on the use of a common set of PSD spectra to benchmark 
the results.

More work required on the implementation in the dynamic simulation of  the 
not coherent ground motions.


