Vibration analysis of the ILD QD0-support system

KEK Hiroshi Yamaoka

- Results of Vibration analysis
- Coherency measurement at KEKB

Introduction

Vibration properties of the ILD QD0 support system has been studied.

QD0(700kg)

BeamCAL(100kg)

Assumptions

are defined.

QD0(700kg) BeamCAL(100kg) LHCAL(3000kg) LumiCAL(250kg) ECAL(420kg)

<u>Calculation of spring constant of the tension rods.</u> For the modeling of tension rods, spring constants are defined on the top of support rods.

Tension rods; CFRP E=130GPa Density: 1.5e-6kg/mm^3

$$\sigma = \varepsilon \cdot E$$

$$\frac{P_{A}}{A} = \frac{\Delta l}{l} \cdot E$$
$$P = \frac{\Delta l}{l} \cdot E \cdot A$$

When Δl is 1*mm*, P shows the spring constant.

$$P_{vertical} = \frac{1}{3180} \cdot 1.3 \times 10^{4} \cdot (50 \times 2)$$

= 410kg
$$K_{v} = 410 kg / mm : \text{Spring constant of the vertical tension rods.}$$

$$P_{horizontal} = \frac{1}{3000} \cdot 1.3 \times 10^{4} \cdot \pi (20^{2} - 18^{2})$$

= 1035kg
$$K_{H} = 1035 kg / mm : \text{Spring constant of the horizontal tension rods.}$$

Approaches to know vibration behavior

1. P.S.D. (Power Spectrum Density) analysis

A *PSD* is a statistical measure of the response of a structure to random dynamic loading conditions. It is a graph of <u>the *PSD* value versus frequency</u>, where the PSD may be a displacement PSD, velocity PSD, acceleration PSD, or force PSD. Mathematically, the area under a PSD-versus-frequency curve is equal to the variance (square of the standard deviation of the response).

2. Spectrum (SPRS) analysis

A *response spectrum* represents the *response* of single-DOF systems to a time-history loading function. It is a graph of <u>response versus frequency</u>, where the response might be displacement, velocity, acceleration, or force. Two types of response spectrum analysis are possible: single-point response spectrum and multi-point response spectrum.

Natural frequency

P.S.D. (Power Spectrum Density) analysis

Vertical ground motion

	<u>1. High-N</u>				
	Freq.	P.S.D. (m²/Hz) 1e-14			
	(Hz)				
	0.1				
	0.15	1e-12			
	0.7	8e-17			
·N	10.	8e-17			
	100	10-22			
10 ⁻⁶	100.	10-22			
10 ⁻⁶	100.	30 nm			
10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸	100.	30 nm			
10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸	100.	30 nm			
10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹	100.	30 nm			
10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹¹	100.	30 nm 0.7 nm			
10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹¹ 10 ⁻¹²	100.	30 nm			

2. Small-N				
Freq.	P.S.D .			
(Hz)	(m²/Hz)			
0.1	1e-14			
0.15	1e-12			
0.7	8e-17			
4.0	1e-20			
13.	5e-21			
100.	3e-26			

3. Reference				
Freq.	P.S.D.			
(Hz)	(m²/Hz)			
0.1	1e-14			
0.15	1e-12			
0.7	8e-17			
100.	8e-28			

Allowable Amplitude → 50nm at 5Hz

6

Calculation results: Vertical direction

→ Integrated amplitude at 5Hz: Larger than 50nm.(ATF, CERN High) 7 Much smaller than 50nm(CERN small, Reference)

If the support-stand were removed,

In case of cylindrical support-tube;

→ Integrated amplitude at 5Hz: <u>It is not so different from Square-tube.</u>
 → 1st mode of natural frequency is almost same.

Calculation: *Horizontal direction*

18 nm

10⁰

[Hz]

10¹

10²

10⁻⁷

10⁻⁸

10⁻⁹ 王 10⁻¹⁰

10-11

10⁻¹²

10⁻¹³

10-2

10⁻¹

<u>1. High-N</u>		2. Reference	
Freq.	P.S.D.	Freq.	P.S.D.
(Hz)	(m²/Hz)	(Hz)	(m²/Hz)
0.1	1e-13	0.1	1e-13
0.16	1e-12	0.16	1e-12
0.7	8e-17	0.7	8e-17
0.95	8e-16	0.95	8e16
1 3	10-17	1.3	1e-17
1.5	7-10	200.	4e-27
33.	/e-18	L	
200.	3e-22		

Allowable Amplitude → 300nm at 5Hz

Calculation results: Horizontal direction (Y-direction.)

Spectrum (SPRS) analysis

Results

→ It seems that there is no coherency between two positions. Except for the frequency of microseismic(0.XHz) and resonance of soil(~3Hz).

15

Measurement: B How is the coherency between the tunnel and floor?

Horizontal dir.: 0.~Hz, ~3Hz
Vertical dir.: 1 ~ 20Hz

Measurement: C L How is the coherency between two positions? Measure: Distance dependency.

Coherency: >10Hz is getting worse.
Vertical dir.: <1Hz is bad.

Investigations of efficiency of detector support structure

- Detector should be fixed to the floor?? or,

Is it enough to just placed it on the floor??

➔ Difference of vibration properties between fixed and un-fixed the

yoke to the support bracket were measured.

Results

→ - Natural frequency after fixed to the bracket is increased to ~1Hz(NS, UD).
 - P.S.D. is reduced because natural frequency is increased.
 → It is not so big different but it's efficient to use the support-brackets.

Support stiffness is increased.

Conclusions

- Vibration behavior for the ILD QD0 support system was studied. Measurement data of ATF/CERN were input. Integrated amplitude of the support system was calculated.
- → Integ. amplitude in case of ATF and CERN high-noise are larger than 50nm at 5Hz.
- → Stiffness of (support tube + support position) should be increased.
- Coherency between long distance(~5m, ~10m) was measured.

→ Good coherency was measured only the frequency around microseismic(~0.XHz) and resonance of soil(~3Hz).

- Efficiency of support structure was investigated with the ND280 detector.
 - ~ Natural frequency is ~1Hz increased after fixed the detector.
 - P.S.D. is decreased because of increasing of natural frequency
- → Support stiffness of the detector is increased. So the support structure is effective.

Static analysis Vertical direction

Horizontal direction(0.15G)

Local excitationsal ground motion

10⁻¹⁰ Additional technical noise: 10⁻¹² $N(\omega) = \frac{N_0}{1 + (\frac{\omega}{\omega})^6}$ **10**⁻¹⁴ 10⁻¹⁶ [عرب] 10⁻¹⁸ ⊦ $N_0 = 0.5(nm^2/Hz)$ $f_0 = 40(Hz)$ 10⁻²⁰ 10-6 10⁻²² 10-7 Reference 18 nm 10⁻²⁴ 10⁻⁸ 10⁻² 10⁻¹ 10⁰ 10¹ 10^{2} [Hz] 10⁻⁹ Έ 10-10 **Ref.**: $A = 10^{-3} (\mu m^2 s^{-1} m^{-1}); B = 10^{-2} (\mu m^2 s^{-3});$ 10-11 $\omega_1 = 2\pi * 0.17 \ (rad/s); d_1 = 5; a_1 = 0.5 \ (\mu m^2/Hz); v_1 = 1000 \ (m/s)$ $\omega_2 = 2\pi * 1 \ (rad/s); d_2 = 8; a_2 = 5 * 10^{-4} \ (\mu m^2/Hz); v_2 = 400 \ (m/s)$ Reference 10⁻¹² C. Collette, ILC-CLIC LET Beam Dynamics 24 10^{2} 10-1 10° 10¹ 10-2 Workshop (23-25 June 2009) [Hz]

Beam direction

Measurement results

Time data- On the roller (@South yoke)

Time(sec.)

Time data- On the roller (@South yoke)

Time data- On the support stand (@North yoke)

