

$Z \rightarrow v v + H \rightarrow \mu^{+} \mu^{-}$
for Detector Benchmarking

Thomas White Jan Strube Rutherford Appleton Laboratory

Software Setup

- Whizard 1.4(?)
- SliC v2r5p3_geant4-v9r1p2
- org.lcsim 1.5 (same as used for LOI)
- Weka 3.6
- RooFit 3.00
 - Packaged in Root 5.24

Samples

- LOI 250 GeV SM Sample
 - 7.8 billion events
- 4f dedicated background samples
 - 2 billion events
- $H \rightarrow$ mu mu dedicated signal sample

- Waikato Environment for Knowledge Analysis
- Developed by the University of Waikato, NZ
- Machine Learning software workbench

Analysis Strategy

- 1. Perform some preliminary cuts
- 2. Dump variables into a classifier
 - Muon quality and angles
 - · "Random Forest" classifier (200 Trees)
- 3. Perform a likelihood fit after a cut on the classifier output

Mean: 0.11694

Classifier Output

- Random Forest
- 24 Variables
- 200 Trees
- Trained on 41000 signal, 3.8 million background events
 - Weighted to 50/50

Jan Strube Rutherford Appleton Laboratory

0

0.2

2.000

Cut Efficiencies

Cuts	2f	4f	2f +Photons	4f +Photons	6f+ Photons	n Photon	signal
Events in 250 / fb	4.1E+09	6.9E+06	1.1E+10	1.2E+08	3.5E+03	2.4E+07	18.50
# Muons = 2	5.57 %	4.22 %	5.71 %	10.84 %	11.18 %		83.5%
# Tracks = 2	5.08 %	2.58 %	5.58 %	9.30 %	0.65 %		21.7%
100 GeV < Higgs Mass < 150 GeV	0.37 %	0.40 %		1.02E-05			20.8%
Visible Energy < 160 GeV	0.23 %	0.35 %		8.13E-06			20.7%
Classif er < 0.95		2.8E-05					12.4%
Weighted		190.57					2.30
Unweighted		26					5020

Rutherford Appleton Laboratory

Results in Context

- LCWS '08 (@ 500 GeV, 2 / ab)
 - 24.6 signal events
 - 8900 background events
- Cut-based LOI analysis (@ 250 GeV, 250 / fb)
 - 2.7 signal events
 - 1200 background events
- This analysis
 - 2.3 signal events
 - 190 background events

Embedded Toy Fits

Toy Fit Results

Likelihood Ratio $\sigma = \sqrt{2 \log(L/L0)}$

10/01/09

Jan Strube Rutherford Appleton Laboratory

Resolution studies

10/(

Summary and Outlook

- The decay $H \rightarrow \mu^+ \mu^-$ is a very challenging channel for analysis
 - Pushing the envelope of what is possible using multivariate techniques
- Golden channel for detector benchmarking
 - Clean signal, immediate feedback on tracker resolution
- To Do: Add Z decays to leptons and jets and repeat the exercise
- To Do: Study the resolution of a pixel tracker

Backup

