ic

2009-OCT-1

HENGNE LI @ LAL

Higgs Recoil Mass and Cross Section Analysis at ILD

Hengne Li

LAL Orsay, B. P. 34, 91898 Orsay Cedex,

France

1

OUTLINE

- Introductory Remarks
- Lepton ID and Track Selection
- Background Suppression
 - Rejection by Cuts
 - MI Analysis: Independent of Higgs Decay modes
 - MD Analysis: Assumptions made on Higgs decay mode

2

- Further Rejection by Likelihood
- Fits

2009-OCT-1

Bremsstrahlung Recovery

HENGNE LI @ LAL

- Results
- Summary

Introductory Remarks

- Higgs-Strahlung Process:

- Higgs Recoil Mass:

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

- Cross Section and Coupling Strength Measurement:

$$g^2 \propto \sigma = N/\mathcal{L}\epsilon$$

HENGNE LI @ LAL

2009-OCT-1

- M_H = 120 GeV

- Ecm = 250 GeV

- Beam Energy Spread: e⁻:0.28%, e⁺:0.18%
- Beamstrahlung: included
- Luminosity: 250 fb⁻¹
- Polarization:

e⁻_Re⁺_L: (e⁻: +80%, e⁺: -30%)

e⁻Le⁺_R: (e⁻: -80%, e⁺: +80%)

- Detector Model: ILD_00
- Event Generation: WIZARD v1.40 (by SLAC)
- Simulation & Reconstruction: ILCSoft v01-06 (by DESY & KEK)

Introductory Remarks

ross-Sect	ions	ıμX	
	Process	Cross-Section	Pro
e-pe+	$\mu\mu X$	7.87 fb	e
O NO L	$\mu\mu$	8.12 pb (58.26 fb)	
	ττ	4850.05 fb	· · · · · · · · · · · · · · · · · · ·
	μμνν	52.37 fb	e
	$\mu\mu ff$	1130.01 fb	ee
	-	λήγ	
0-0+-	Process	Cross-Section	Pr
e le K	$\mu\mu X$	11.67 fb	
	$\mu\mu$	10.44 pb (84.86 fb)	
	au au	6213.22 fb	

481.68 fb

1196.79 fb

eeX

Process	Cross-Section
eeX	8.43 fb
ee	17.30 nb (335.47 fb)
au au	4814.46 fb
$ee\nu\nu$	107.88 fb
eeff	4135.97 rb

eeX

Process	Cross-Section
eeX	$12.55 \mathrm{fb}$
ee	17.30 nb (357.14 fb)
au au	6213.22 fb
$ee\nu\nu$	648.51 fb
eeff	4250.58 fb

~7% ZZ fusion (2) $\mu\mu\nu\nu$ and eevv have major contribution from WW, but also from ZZ. (2) $\mu\mu ff$ refers to $\mu\mu ee +$ $\mu\mu\mu\mu + \mu\mu\tau\tau + \mu\mu qq$, eeff refers to ee $\mu\mu$ + eeee + ee $\tau\tau$ + eeqq

(1) eeX also includes

	ee process	$\mu\mu$ process
Pre-cuts for ee and µµ:	$\boxed{ \cos\theta_{e^+/e^-} < 0.95}$	
(cross-sections after pre-	$M_{dl} \in (71.18, 111.18) \text{ GeV}$	$M_{dl} \in (71.18, 111.18) \text{ GeV}$
cuts are in brackets)	$P_{Tdl} > 10 \text{ GeV}$	$P_{Tdl} > 10 \text{ GeV}$
	$M_{recoil} \in (105, 165) \text{ GeV}$	$M_{recoil} \in (105, 165) \text{ GeV}$

Production Statistics:

2009-OCT-1

C

1) Signal: 10 ab⁻¹ each

HENGNE LI @ LAL

 $\mu\mu\nu\nu$

 $\mu\mu ff$

2) Background: mostly larger than 250 fb⁻¹, re-weighted to correct luminosity spectrum with a dedicated algorithm (thanks to M. Berggren).

Preparations

Analysis Procedures

Analysis Models	Model Independent (MI)	Model Dependent (MD)			
Background Rejection	MI Cut-chain	MD Cut-chain			
	Likelihood Further Rejection				
Fits and Results					

- Background Rejection
 - Rejection by Cuts
 - MI Cut-Chain: Independent of Higgs Decay Modes
 - MD Cut-Chain: Assumes more than two charged tracks from Higgs decay
 - Further Rejection by Likelihood with Model Independent variables
- Fit and Results

2009-OCT-1

HENGNE LI @ LAL

Background Rejection by Cuts: MI Cut-Chain

MI Cut-Chain & Nevts after each cuts: Pol. e⁻Le⁺_R, μμX-channel for illustration

N_{evts} Remained	$\mu\mu X$	$\mu^+\mu^-$	$\tau^+\tau^-$	$\mu^+\mu^-\nu\nu$	$\mu^+\mu^-ff$
Before any restriction	2918 (100.0%)	$2.6 \mathrm{M}$	1.6M	111k	317k
+ Lepton ID		5163.24	State:		
+ Tightened Pre-Cuts	2472 (84.72%)	9742	4582	9268	8175
$+ P_{Tdl} > 20 GeV$	2408 (82.50%)	7862	3986	8462	7222
$+ M_{dl} \in (80, 100) GeV$	2292~(78.54%)	6299	2679	5493	5658
$+ acop \in (0.2, 3.0)$	2148 (73.61%)	5182	112	5179	5083
$+\Delta P_{\text{Tbal.}} > 10 \text{GeV}$	2107 (72.20%)	335	80	4705	4706
$ + \Delta\theta_{\rm 2tk} > 0.01$	2104 (72.11%)	149	80	4647	4676
$ + \cos\theta_{\rm missing} < 0.99$	2046 (70.09%)	82	80	4647	3614
$+ M_{recoil} \in (115, 150)GeV$	2028~(69.48%)	75	80	3642	2640

Ξ.

Background Rejection by Cuts: MI Analysis

ISR P_T balance for µµ and ee rejection

Idea: (Thanks to F. Richard)

- For μμ and ee: P_T of ISR photon should balance the P_T of di-lepton system;
- For signal: Impossible to have ISR to balance Z P_T, independent of Higgs decay model.

Requirements:

• $M_{dl} \in (80, 100)$ GeV: large FSR events are removed

HENGNE LI @ LAL

P_{Tdl} > 20 GeV: Large P_T ISR photon

Define $\Delta P_{Tbal.} = P_{Tdl} - P_{Ty}$ ΔP_{Tbal.} > 10 GeV

Reduces µµ and ee further by 1 to 2 orders of magnitude Signal lost: ~1%

8

To reject the ISR Photon conversions:

- Cut $|\Delta \theta_{2tk}| > 0.01$: Only apply on events with 2 additional tracks
- Reject µµ and ee Further by a factor of 2.

Background Rejection by Cuts: MD Cut-Chain

9

MD Cut-Chain & Nevts after each cuts:

Pol. $e_Le_{R}^+$, $\mu\mu X$ channel for illustration

2009-OCT-1

N_{evts} Remained	$\mu\mu X$	$\mu^+\mu^-$	$\tau^+\tau^-$	$\mu^+\mu^- u u$	$\mu^+\mu^-ff$
Before any restriction	2918 (100.0%)	$2.6 \mathrm{M}$	1.6M	111k	317k
+ Lepton ID					
+ Tightened Pre-Cuts	2472~(84.72%)	9742	4582	9268	8175
+ N _{add.TK} > 1	2453~(84.05%)	604	842	145	6321
$ + \Delta \theta_{2tk} > 0.01$	2449~(83.91%)	63	816	14	6254
$ + \Delta heta_{\min} > 0.01$	2417 (82.81%)	38	261	1	5711
$+ a cop \in (0.2, 3.0)$	2256~(77.29%)	32	0	1	5051
$+ \cos\theta_{\rm missing} < 0.99$	2189~(75.00%)	16	0	1	3843
$+ M_{recoil} \in (115, 150) GeV$	2154 (73.81%)	15	0	1	2830

Additional Number of Tracks besides the two lepton candidates

HENGNE LI @ LAL

For SM Higgs decay, multiplicity in the final states is the most efficient criterion to reject the 2f and WW

- In order to keep the H-> $\tau\tau$ in the signals :
- At most: N_{add.tks}>1
- How to reject evts with N_{add.tks}=2 in μμ and ττ?
- Photon conversions

Background Rejection by Cuts: MD Cut-Chain

2)

To reject evts with $N_{add.tks}$ =2 in $\mu\mu$ and $\tau\tau$

- Define $\Delta \theta_{2tk}$: $\Delta \theta$ between these two additional tracks for events with N_{add.tks}=2.
- Apply I $\Delta \theta_{2tk}$ I>0.01 to reject photon conversions

1)

- Define $\Delta \theta_{min}$: the smallest $\Delta \theta$ between the additional tracks and the lepton candidates
- Because mis-identification of photon conversions to be lepton candidates
- Apply I $\Delta \theta_{min}$ I>0.01

3, 2009

Further Rejection by Likelihood: For both MI and MD analyses

Background Rejection Summary Table

Efficiency: µµX around 60%, eeX around 40%, S/B: on average around 1

HENGNE LI @ LAL

Ana.	Pol.	Ch.	S (%)	В
MI	$e_{\rm R}^- e_{\rm L}^+$	$\mu\mu X$	1165~(59.20%)	1023
		eeX	909~(43.14%)	1991
	$e_{\rm L}^- e_{\rm R}^+$	$\mu\mu X$	1596~(54.68%)	2563
		eeX	1153~(36.74%)	3508
MD	$e_R^- e_L^+$	$\mu\mu X$	1289~(65.53%)	883
		eeX	889~(42.20%)	1139
	$e_{\rm L}^- e_{\rm R}^+$	$\mu\mu X$	1911~(65.49%)	1397
		eeX	1378~(43.90%)	1679

2009-OCT-1

Fit Methods

Signal Functions: (three functions are studied, with identical results)

GPET Function:

Gaussian core for the Peak with an Exponential complementing the tail, updated from previous contributions.

Kernel Estimation: An universal method for all kinds of distributions, Intensively used at LEP for Higgs searches,

Physics Motivated Function: New!

Not a fit, but a prediction of the MC distribution!!!

Build Composite Model: $F(x) = N_S f_S(x) + N_B f_B(x)$

1) Determine fitting parameters from MC (a separate data set)

Fitting: 2) Fix all the parameters except the Ns and M_H

3) Fit to the "Sig+Bkg" to get the results

To minimize the error on the error of the result:

1) Signal is scaled down from 10ab⁻¹ to 250 fb⁻¹

HENGNE LI @ LAL

2) Background is regenerated 100 times based on the fitting parameters from MC and scaled down to 250 fb⁻¹

2009-OCT-1

Fit: (Physics Motivated Function)

Results (a)

^(a) Results are identical from all three fit methods.
 ^(b) ee(nγ)X: refers to eeX results with Bremsstrahlung Recovery
 ^(c) Merged: Results with merged statistics of μμX and ee(nγ)X.

Ana.	Pol.	Ch.	δM _H (MeV)	δσ/σ (%)	Ana.	Pol.	Ch.	δM_H (MeV)	δσ/σ (%)
MI	e ⁻ re ⁺ L	μμΧ	40	3.58		e ⁻ Re ⁺ L	μμΧ	38	3.32
		eeX	93	5.09	MD		eeX	82	4.51
		ee(nγ)X ^(b)	81	4.28			ee(nγ)X	74	3.69
		merged ^(c)	36	2.75			merged	34	2.47
	e ⁻ Le ⁺ R	μμΧ	37	3.35		e⁻∟e⁺ _R	μμΧ	31	2.76
		eeX	87	4.92			eeX	66	3.59
		ee(nγ)X	73	3.91			ee(nγ)X	60	3.04
		merged	33	2.54			merged	28	2.04

1. Best results obtained : $\delta M = 28 \text{ MeV}$, $\delta \sigma / \sigma = 2.0\%$ combining $\mu \mu X$ and eeX two channels

2. Precisions from eeX-channel are worse by a factor of 2 for M_H measurement, while 1.5 for cross-section measurement, on average, than that of the $\mu\mu$ X-channel, due to

Bremsstrahlung of electron final states and larger background related

3. MD analysis are more precise by about 10% than MI analysis on average.

4. Polarization $e_{L}e_{R}^{+}$ gives better results than $e_{R}e_{L}^{+}$ by about 10% in MI analysis and 20% in MD analysis, because:

(1) e⁻_Re⁺_L suppresses the WW background, but also suppresses the signal by about 20%

(2) WW background can be efficiently rejected by analysis methods independent of the beam polarization.

5. Bremsstrahlung recovery improves the eeX-channel results by about 10% on the M_H measurement, and about 20% on the cross-section measurement, on average.

2009-OCT-1

HENGNE LI @ LAL

Summary

- Realistic Methods and Techniques are developed for the Higgs Recoil Mass and Higgsstrahlung cross-section measurement Brems. mean energy loss V.S. vertex position

- eeX-channel suffers from Bremsstrahlung, material budget has potential to be revised.
- Bremsstrahlung photons are included in the eeX-channel analysis, better results obtained:
• ~ 10% in MH;

2009-OCT-1

- ~ 20% in cross-section
- Measurements precision achieved (L=250fb⁻¹):
 - Higgs Mass: merged result: **28 MeV**
 - Cross-Section: merged result: 2.0%

- The Higgs Recoil Mass measurement is very sensitive to accelerator effects:

- Beam Energy Spread: Increases the width of recoil mass peak, thus reduce the accuracy of the measurement.
- **Beamstrahlung: Largely reduces the** effective statistics on the recoil mass peak

HENGNE LI @ LAL

Backup Slides

2009-OCT-1

HENGNE LI @ LAL

- Same track selection cuts applied on eeX-channel, as show in figures above

cosθ

- However, due to Bremsstrahlung:

-0.5

-1

2009-OCT-1

- larger number of bad reconstructed tracks than that of the µµX-channel
- larger number of low energetic tracks than that of the µµX-channel

0.5

0

HENGNE LI @ LAL

21 ALCPG09, Albuquerque, Sept. 29 - Oct. 3, 2009

40

60

80

P (GeV)

100

20

0

23

ALCPG09, Albuquerque, Sept. 29 - Oct. 3, 2009

2009-OCT-1

HENGNE LI @ LAL

Fit: (GPET Function)

Fit: (Kernel Estimation)

M_{recoil} (GeV)

