Stable charged particle identification in 4th

Vito Di Benedetto, University Salento John Hauptman, Iowa State University Anna Mazzacane, University Salento

ALCPG 09, Albuquerque, NM Sept. 29 - Oct. 3, 2009

The main problem addressed here is the identification of a track (through a tracking system and into a calorimeter) with a very high efficiency and a very low mis-identification rate.

Valuable physics tracks are μ and e, and dominant background tracks are π^{\pm} from high-x q/g fragmentation, but also $\tau \rightarrow \pi^{\pm}$.

 μ and *e* sources are *W*,*Z* and also speculative exotic particles.

Telling an *e* from a π

e vs. π direct dual-readout

The "proof-of-principle" DREAM module

S = scintillating fibers Q = quartz (clear) fibers

DREAM: Structure

- Some characteristics of the DREAM detector
 - **Depth** 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
 - Hexagonal towers (19), each read out by 2 PMTs

DREAM readout

Channel structure defined by bundled scintillation and Cerenkov fibers

Shine light through module

Dual-readout DREAM: Structure

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
 - Hexagonal towers (19), each read out by 2 PMTs

SCINTILLATOR

2.5 mm⊣

1

DUARTZ 83 GEV == (7)

ADC 13 raw amplitude spectrum

e vs. π time-history of scintillation fibers

e vs. π dual-readout channel-to-channel fluctuations

Chi-squared of S-C fluctuations among the channels of a shower:

$$\chi^2_{C-S} = \Sigma \left(\frac{S_k - C_k}{\sigma_k}\right)^2 \approx \Sigma_k \frac{(S_k - C_k)^2}{0.1(S_k + C_k)}$$

$$\chi^2_{C-S} \rightarrow$$

Telling a μ from a π

(More-or-less isolated track, but could be near a jet, too.

μ vs. π dual-readout: $\theta_{Cher} > \theta_{num. aperture}$ (S~dE/dx+brems & C~brems) S-C ~ dE/dx ~ 1.1 GeV (in DREAM) for μ

200 GeV µ-

200 GeV π⁻

$\mu vs. \pi$ dual-readout: $\theta_{Cher} > \theta_{num. aperture}$

100 GeV µ⁻

 $\mu vs. \pi$ dual-readout: $\theta_{Cher} > \theta_{num. aperture}$

40 GeV μ⁻

20 GeV π⁻

μ vs. $\pi_{punch-through}$ E-p balance: dual-solenoids

4TH DETECTOR EXTENDED

Event Display in ILCroot

Telling $e-\mu-\pi-K-p$ from each other

(Few GeV region)

e- μ - π -K-p in few-GeV region

different wires: cluster count is Poisson

(no Landau fluctuations), expect 3.5%

measurement of specific ionization

dN/dx by cluster-timing: *specific ionization resolution* ~ 3.5%

TPC with $\sim 6\%$ *dE/dx* resolution

This TPC built by Dave Nygren, LBL, in 1970's, analyzed by Gerry Lynch.

Thursday, October 1, 2009

Summary:

4th has many particle ID measurements, including handles on all fundamental partons. These are the ones for stable charged tracks.

- Leptons: e, mu, tau & neutrino (by subtraction)
- Quarks: uds & $t \rightarrow Wb$ (by reconstruction)
- Bosons: W, Z, and gamma
- Hadrons: pi-zero (by mass), charged pi, K, p (by dE/dx)

Extras

Test beam setup

(July-Aug '08)

Thursday, October 1, 2009

ID discrimination	measurement	item	
e - pi - mu	S vs. C	#1 (measured - beam test data)	
EM vs. hadronic	channel-to-channel S-C fluctuations	#2 (measured - beam test data)	
<i>"neutronic"</i> (hadronic vs. non-hadronic)	fn	#3 (measured - beam test data)	
mu vs. e,pi	(S-C) vs. (S+C)	#4 (measured - beam test data)	
n & e vs. pi	$S_{pe}(t)$	#5 (measured - beam test data)	
e-pi-K-p (few GeV)	$dN_{clusters}/dx$	#6 (bench measurements data)	

ID discrimination	measurement	item
e vs. gamma	Tracking, BGO	#7 (ILCroot)
mu vs. punch- through hadrons	$P_{mu} + E_{dual} + P_{tracking}$	#8 (ILCroot)
tau> rho nu	BGO + fiber dual readout	#9 (ILCroot)
Massive SUSY, etc.	Cerenkov light timing (BGO+fibers)	#10 (ToF from beam test data)
W> jj	ILCroot, Tracking, dual-readout	#11 (achieved with ILCroot)

Dual readout (in optical fibers of DREAM module)

$$\boldsymbol{Q} = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\mathbf{Q}}} (1 - f_{\text{em}}) \right]$$
(1)

$$\mathbf{S} = E \left[f_{\rm em} + \frac{1}{(e/h)_{\rm S}} (1 - f_{\rm em}) \right]$$
(2)

e.g. If e/h = 1.3 (S), 4.7 (Q)

$$\frac{Q}{S} = \frac{f_{\rm em} + 0.21 \,(1 - f_{\rm em})}{f_{\rm em} + 0.77 \,(1 - f_{\rm em})}$$
(3)

$$E = \frac{S - \chi Q}{1 - \chi} \tag{4}$$

with
$$\chi = \frac{1 - (h/e)_{\rm S}}{1 - (h/e)_{\rm Q}} \sim 0.3$$

Dual readout (in BGO crystals tested with DREAM module)

Dual-readout calorimeters (CERN beam tests)

DREAM

The DREAM Collaboration (Cagliari, CERN, Cosenza, Iowa State, Pavia, Pisa, Rome, Texas Tech)

Will answer K. Hara's question.)

Thursday, October 1, 2009

Why dual-readout works so well (and so easily)

	ID	Physical measurement	Partons/particles identified	Subsystems used
 Achieved in test beam 	1	C vs. S	$e^{\pm} vs. \pi^{\pm} vs. \mu^{\pm}$	S and C
data	2	$\chi^2 \sim \frac{1}{N} \Sigma_i^N [(C_i - S_i) / \sigma_i]^2$	EM <i>vs</i> . non-EM <i>vs</i> . "hadronic"	S_i and C_i channels
	3	(S-C) vs. $(S+C)$	$\mu \ vs. \ \pi$	fiber S and C
Achieved in cosmic mu	4	$f_n \sim E_n / E_{\text{shower}} \text{ (MeV}$ neutrons)	"hadronic" <i>vs.</i> non-"hadronic"	scintillating fibers $S_{pe}(t)$ long-time history
test data	5	S_{pe} time duration	EM <i>vs.</i> non-EM <i>vs.</i> "hadronic"	S fibers time-history
• Achieved in	6	dN/dx, specific ionization (cluster counting)	$e - \mu - \pi - K - p$ (few GeV region)	CluCou tracking
ILCroot	7	EM calor $+$ tracking	$e-\gamma$	CluCou tracking + dual-readout calor's
and analysis	8	$p_{\rm track} \approx E_{\rm calor} + p_{\mu}$	$\mu~vs.$ punch-through π	CluCou, calor, muon
	9	$\tau^{\pm} \to \rho^{\pm} \nu \to \pi^{\pm} \gamma \gamma$	$\tau vs.$ hadronic debris	BGO and fiber dual-reaout, CluCou
	10	Time-of-flight (sub-ns)	massive SUSY object	Čerenkov pulses in BG and fiber calorimeter
	11	$W, Z \to jj$ mass	W, Z vs. QCD jj	CluCou, jet finding, dual-readout calor's