2009 Linear Collider Workshop of the Americas Missing Energy

Determination of the $\tilde{\chi}_1^0$ lifetime in $\tilde{\chi}_1^0 - > \tilde{G}\gamma$ decays Detector Optimisation with Physics Analyses

Nanda Wattimena

Deutsches Elektronensynchrotron DESY

September 30, 2009

Supersymmetric World

SUSY breaking

- is necessary, otherwise sparticles already observed
- takes place in some hidden sector
- mediated to visible world via
 - gravitational interactions (mSugra)
 - gauge boson interactions (mGMSB)

GMSB

Features

- - \Rightarrow missing transverse energy
- 2nd lightest SUSY particle (NLSP) is $\tilde{\chi}_1^0$ or $\tilde{\tau}$
 - can be long-lived
 - \Rightarrow displaced vertices from NLSP decay

Parameters (Point 7)

- SUSY breaking scale $\Lambda=110~{\rm TeV}$
- messenger mass scale $M_{
 m mess}=$ 240 ${
 m TeV}$
- ratio of Higgs v.e.v's $tan(\beta) = 3.0$
- number of messenger multiplets $N_5 = 1$
- sign of Higgs mass parameter $sgn(\mu) = +$
- scale factor for Gravitino couplings $c_{
 m grav}=23$

What we expect ...

- 2 highly energetic γ
- displaced vertices

missing transverse energy

... and what we need to see it

- ECAL energy resolution
- ECAL position and angular resolution
- detector hermeticity

What we expect ...

- 2 highly energetic γ
- displaced vertices

missing transverse energy

... and what we need to see it

- ECAL energy resolution
- ECAL position and angular resolution
- detector hermeticity

What we expect ...

- 2 highly energetic γ
- displaced vertices
- missing transverse energy

... and what we need to see it

- ECAL energy resolution
- ECAL position and angular resolution
- detector hermeticity

Particle Flow

- use detector with best energy resolution
 - tracker for charged particles
 - ECAL for γ
 - HCAL for neutral hadrons
- → reconstruct 4-momenta
 of all measurable particles
 in each event

Imaging Calorimetry

- spacial resolution vs. energy resolution
 - \Rightarrow high granularity
- operated in 3.5 T magnetic field
 - \Rightarrow compact design
- hard- and software development go hand in hand

•
$$\epsilon = N_{\rm cluster}/N_{\gamma} > 88$$
 %

Energy deviation < 5 %

 ^{σ_E}/_E = (16.7±0.3) %/(√E [GeV]) ⊕ (0.61 ± 0.08) %

 Systematic shift in Φ up to 6 %
 → Error on lifetime reconstruction!
 ^{σ_θ}/_E = (131±2) mrad/(√E) ⊕ (3.7 ± 0.5) mrad

- $\epsilon = N_{
 m cluster}/N_{\gamma} >$ 88 %
- Energy deviation < 5 %</p>
- $\frac{\sigma_E}{E} = \frac{(16.7 \pm 0.3) \%}{\sqrt{E \, [\text{GeV}]}} \oplus (0.61 \pm 0.08) \%$
- Systematic shift in Φ up to 6 %
 - → Error on lifetime reconstruction!
 - $\frac{\sigma_{\theta}}{E} = \frac{(131\pm 2) \text{ mrad}}{\sqrt{E \text{ [GeV]}}} \oplus (3.7\pm 0.5) \text{ mrad}$

•
$$\epsilon = N_{
m cluster}/N_{\gamma} > 88 \%$$

•
$$\frac{\sigma_E}{E} = \frac{(16.7 \pm 0.3)\%}{\sqrt{E \,[\text{GeV}]}} \oplus (0.61 \pm 0.08)\%$$

• Systematic shift in Φ up to 6 %

→ Error on lifetime reconstruction!

$$\frac{\sigma_{\theta}}{E} = \frac{(131\pm2) \text{ mrad}}{\sqrt{E \text{ [GeV]}}} \oplus (3.7\pm0.5) \text{ mrad}$$

- $\epsilon = N_{
 m cluster}/N_{\gamma} > 88 \%$
- Energy deviation < 5 %</p>

•
$$\frac{\sigma_E}{E} = \frac{(16.7 \pm 0.3) \%}{\sqrt{E \; [\text{GeV}]}} \oplus (0.61 \pm 0.08) \%$$

- Systematic shift in Φ up to 6 %
 - → Error on lifetime reconstruction!

•
$$\epsilon = N_{
m cluster}/N_{\gamma} > 88$$
 %

•
$$\frac{\sigma_E}{E} = \frac{(16.7 \pm 0.3) \%}{\sqrt{E \, [\text{GeV}]}} \oplus (0.61 \pm 0.08) \%$$

- Systematic shift in Φ up to 6 %
 - \rightarrow Error on lifetime reconstruction!

•
$$\frac{\sigma_{\theta}}{E} = \frac{(131\pm 2) \text{ mrad}}{\sqrt{E \text{ [GeV]}}} \oplus (3.7\pm0.5) \text{ mrad}$$

- $1500 < N_{\rm hits}(ECAL) < 6000$
- 80 GeV $< E_{sum}(ECAL) < 450 \text{ GeV}$
- at least 2 γ with
 - $E_{\gamma} > 20 \text{ GeV}$

- 217,000 signal events
- 2,001,000 $\nu_e \overline{\nu_e} \gamma \gamma$ events
- 70,000 $\nu_{\mu}\overline{\nu_{\mu}}\gamma\gamma$ events
- 70,000 $\nu_{\tau}\overline{\nu_{\tau}}\gamma\gamma$ events
- 3,114,000 γγ events

- $1500 < N_{\rm hits}(ECAL) < 6000$
- 80 GeV $< E_{sum}(ECAL) < 450 \text{ GeV}$
- at least 2 γ with
 - $E_{\gamma} > 20 \text{ GeV}$
 - $|\cos(\theta_{\gamma})| < 0.75$

- 202,000 signal events
- 905,000 $\nu_e \overline{\nu_e} \gamma \gamma$ events
- 50,000 $\nu_{\mu}\overline{\nu_{\mu}}\gamma\gamma$ events
- 50,000 $\nu_{\tau}\overline{\nu_{\tau}}\gamma\gamma$ events
- 2,177,000 $\gamma\gamma$ events

- $1500 < N_{\rm hits}(ECAL) < 6000$
- 80 GeV $< E_{sum}(ECAL) < 450 \text{ GeV}$
- at least 2 γ with
 - $E_{\gamma} > 20 \text{ GeV}$
 - $|\cos(heta_\gamma)| < 0.75$

- 201,000 signal events
- 900,000 $\nu_e \overline{\nu_e} \gamma \gamma$ events
- 50,000 $\nu_{\mu}\overline{\nu_{\mu}}\gamma\gamma$ events
- 50,000 $\nu_{\tau}\overline{\nu_{\tau}}\gamma\gamma$ events
- 1,113,000 $\gamma\gamma$ events

- $1500 < N_{\rm hits}(ECAL) < 6000$
- 80 GeV < E_{sum}(ECAL) < 450 GeV

 $E_{\gamma} > 20 \text{ GeV}$

- 184,000 signal events
- 746,000 $\nu_e \overline{\nu_e} \gamma \gamma$ events
- 43,000 $\nu_{\mu}\overline{\nu_{\mu}}\gamma\gamma$ events
- 43,000 $\nu_{\tau}\overline{\nu_{\tau}}\gamma\gamma$ events
- 21,000 $\gamma\gamma$ events

- $1500 < N_{\rm hits}(ECAL) < 6000$
- 80 GeV $< E_{sum}(ECAL) < 450 \text{ GeV}$
- at least 2 γ with
 - $E_{\gamma} > 20 \text{ GeV}$
 - $|\cos(\theta_{\gamma})| < 0.75$

- 174,000 signal events
- 283,000 $\nu_e \overline{\nu_e} \gamma \gamma$ events
- 16,000 $\nu_{\mu}\overline{\nu_{\mu}}\gamma\gamma$ events
- 16,000 $\nu_{\tau}\overline{\nu_{\tau}}\gamma\gamma$ events
- 18,000,000 γγ events

- $1500 < N_{\rm hits}(ECAL) < 6000$
- 80 GeV $< E_{sum}(ECAL) < 450 \text{ GeV}$
- at least 2 γ with

•
$$E_{\gamma} > 20 \text{ GeV}$$

• $|\cos(heta_\gamma)| < 0.75$

- 116,000 signal events
- 29,000 $\nu_e \overline{\nu_e} \gamma \gamma$ events
- 1,600 $\nu_{\mu}\overline{\nu_{\mu}}\gamma\gamma$ events
- 1,600 $\nu_{\tau}\overline{\nu_{\tau}}\gamma\gamma$ events
- 1,200 $\gamma\gamma$ events

*MC*_{true} mass

- MC true information
- only signal
- no selection cuts applied
- $m_{
 m MC} = 154.9 \pm 0.5 \; {
 m GeV}$

reco mass

- reconstructed events
- signal plus background
- after selection cuts
- $m_{
 m reco} = 126.5 \pm 2.6 \; {
 m GeV}$

Remarks

- high deviation from input mass $m_{\rm in} = 151.0~{
 m GeV}$
- possibly problem with energy reconstruction and/or selection criteria
- if needed MC based correction possible

Reconstruction Steps

- reconstruct γ
 - shower centre of gravity *cog*
 - shower principle axis \vec{EV}
 - angle Ψ between them
 - shower energy E_{γ}
- already known
 - $ilde{\chi}^0_1$ energy $E_{ ilde{\chi}^0_1}=E_{
 m cms}/2$
 - $ilde{\chi}^0_1$ mass $m_{ ilde{\chi}^0_1} = 151~{
 m GeV}$
- calculate
 - angle Φ between $\tilde{\chi}_1^0$ and γ
 - $ilde{\chi}^0_1$ decay length $\lambda = |c ec{o} g| rac{\sin n}{\sin n}$

Reconstruction Steps

- reconstruct γ
 - shower centre of gravity cog
 - shower principle axis \vec{EV}
 - angle
 ↓ between them
 - shower energy E_{γ}

already known

- $\tilde{\chi}_1^0$ energy $E_{\tilde{\chi}_1^0} = E_{\rm cms}/2$ • $\tilde{\chi}_1^0$ mass $m_{-0} = 151$ GeV
- calculate
 - angle Φ between $\tilde{\chi}_1^0$ and γ
 - ${ ilde \chi}^0_1$ decay length $\lambda = |c \vec{o} g| {\sin n \over \sin n}$

Reconstruction Steps

- reconstruct γ
 - shower centre of gravity cog
 - shower principle axis \vec{EV}
 - angle Ψ between them
 - shower energy E_{γ}
- already known

•
$$\tilde{\chi}_1^0$$
 energy $E_{\tilde{\chi}_1^0} = E_{\rm cms}/2$

- $\tilde{\chi}_1^0$ mass $m_{\tilde{\chi}_1^0} = 151 \text{ GeV}$
- calculate
 - angle Φ between $\tilde{\chi}^{\rm 0}_{\rm 1}$ and γ
 - $\tilde{\chi}_1^0$ decay length $\lambda = |\vec{cog}| \frac{\sin \Psi}{\sin \Phi}$

Fitting the Lifetime

- fit background only spectrum
- subtract fit from 'data' sample
- $\bullet\,$ fit resulting 'signal' sample with Landau $\otimes\,$ Gauss (RooFit)

	$ au_{ m true} = 0.2 \; m ns$	$ au_{ m true} = 2.0 \; m ns$	$ au_{ m true} = 11.0~{ m ns}$
$\tau_{\rm reco} [{\rm ns}]$	0.471 ± 0.002	$\textbf{2.182} \pm \textbf{0.010}$	11.39 ± 0.56

Summary

- $\bullet\,$ at lifetimes \lesssim 1 ns limited by detector resolution
- at few ns lifetime reconstruction is possible (remember systematic error from angular reconstruction)
- $\bullet\,$ at lifetimes \gtrsim 10 ns limited by detector size