Compton Experiment at the ATF Update since TILC09

Optical Cavity for Laser-Compton

Higher laser power

 L_{cav} = n $\lambda/2$, ΔL <nm laser for pulse stacking ->more enhancement the more precision Laser should be focused for high power density

Efficient laser-Compton scattering

 $\Delta T < ps$

Accommodate laser cavity in the accelerator

Two Prototype Cavities

2-mirror cavity (Hiroshima / Weseda / Kyoto / IHEP / KEK)

4-mirror cavities w/LAL

moderate enhancement moderate spot size simple control

demonstration of γ ray gen. accum. exp. w/ cavity and acc.

high enhancement small spot size complicated control

intense γ ray generation

2 MIRROR CAVITY STATUS

Experimental R/D in ATF

Hiroshima-Waseda-Kyoto-IHEP-KEK

Pulse Make a fist prototype prototype 2-mirror cavity

 $L_{cav} = 420 \text{ mm}$

Put it in ATF ring

Result

We detected 27 gamma-rays / bunch train. generation 60 gamma-rays / train to all angle.

60×2.16MHz ~ 1.2 × 10⁸ [gamma / second]

AFTER TILC09

- One of the Mirror was replaced with the higher reflectivity one
 - **-99.6% -> 99.9%**
 - power enhancement
 - 250 -> ~750
 - more precise controll required (~0.1nm)
- ► Status of the cavity w/ new mirror
 - -Finess ~2000 with feedback on before vacuum on

99.6%

99.9%

- -now in preparation for beam
- hope to get 3 times more photons by the end of the year

4 MIRROR CAVITY STATUS

March 2009

August 2009

2D configuration

2D 4mirror cavity has astigmatism.

3D configuration

go to 3D config. to avoid astgmatism

position in the cavity

R&D of 4 mirrors cavity started at KEK (Reported TILC09)

Honda

prototype 4 mirror cavity Constructed

tuning mechanizm

Objective: to establish method of:
mirror alignment, control cavity length
→ feed back to the beam compatible cavity

Prototype cavity on the optical table

status of initial tests

resonance of the cavity with injecting laser observed

two peaks

two separated resonant peaks

each corresponds to left or right handed polarization

•3D cavity only resonates with circular polarization due to geometric phase

Useful to:

- generate circularly pol. γs
- fast switching

Staus of the LAL cavity

French colleagues visited KEK in July.

discussed detail of the installation procedure

setting up at the ATF beam line

working to install the cavity in summer 2010

Summary

- ► 2 mirror cavity to demonstrate photon generation and to accumulate experience w/ beams
 - At the TILC09
 - enhancement of 250, 27 gammas / crossing
 - -high reflection mirror (99.6% -> 99.9%)
 - beam with enhancement ~750 to 1000 this year
- ► 4 mirror ring cavity for higher enhancement and small spot size
 - -at the TILC09
 - basic test on optical table
 - -first prototype at KEK and being tested
 - installation of LAL cavity being ready

Quantum Beam Project supported by JST

Development for Next Generation Compact High Brightness X-ray

4-mirror ring cavity

Equivalent Optics of the 4-mirror Cavity

tolerance: 4-mirror = 100×2 -mirror

2D configuration

3D configuration

Tolerance of 2-mirror cavity

Concentric Configuration and Confocal Configuration

2-mirror cavity

R1=R2=L/2waist waist waist 1/2 1/2

concentric

4-mirror cavity

data summary

bunch /train	current [mA]	Stacked Laser power[W]	γs/train	expectation	normarized γs/A/W
1	2.2	437 ± 2	5.4 ± 0.3	4.9 ± 0.3	5.6 ± 0.3
5	4.7	432 ± 2	10.6 ± 0.1	10.5 ± 0.5	5.3 ± 0.1
10	8.5	470 ± 2	19.0 ± 0.1	21±1	4.8 ± 0.1
15	11	498 ± 2	26.9 ± 0.1	29 ± 1	4.8 ± 0.1

Normalized γ yield seems to decrease as # bunches/train goes up

Bunch (size, timing) fluctuation in the ATF suspected