

LCWA09 DR Session Introduction

S. Guiducci (LNF)

LCWA09, 30 September 2009

9/30/09 LCWA09, Albuquerque **Global Design Effort**

– Update R&D and TDP plans

- Process from e-cloud R&D results to DR design (choice of mitigation techniques)
- Startup of e-cloud working group
- Discussion of new Baseline choice SB2009
- Presentations on R&D and Design work
- CesrTA test facility
 - Results of the last running period
 - Planning

AD&I meeting at DESY

- From the Summary Report:
 - A discussion on the 'upgrade' potential from the SB2009 proposed 1312 bunches back to the current RDR nominal value of 2623 (doubling the current) immediately identified bottlenecks.
 - The Working Assumption is to continue with the 3.2km option, but attempt to quantify the current limits due to e-cloud (on-going R&D).
- Action Items for DR
 - For 3.2km ring, what are the estimated limits on bunch charge and number?
 - Update risk register (bunch distance and current)

	Baseline TILC08	SB2009
# of bunches	2610 - 5265	1305 - 2632
Bunch population N _b	2 - 1 · 10 ¹⁰	2 · 10 ¹⁰
Bunch distance (ns)	6.2 - 3.1	6.2 - 3.1
C (m)	6476	3238
h	14042	7021
Kicker frep MHz (1ms linac pulse)	2.7 - 5.4	1.4 - 2.7

For 2632 bunches $N_b = 2 \cdot 10^{10}$

	Concern			RISK	COST	r*C	MITIGATION	RDF	く
••••••	i.							Risk	(
	(1) Secondary Emission Yield	too		• • •	• • •	• • • •	Return to two e+ ring design after		() () () () () () () () () () () () () () () ()
	high. >1.2		Q	High	200	100	extensive R&D programs	ana	iys
	(2) Vacuum system design not robust	t		Med	20		Redesign vacumm system with more distributed pumping		
	(3) High impedance of vacuum chamber components	1		Med	10		More engineering design or DR re- optimization	Ne	e
	(4) RF Margin		Q	Med	50	1:	Increase klystron/cavity system		da
	(5) Combination of concerns w and Wiggler layouts	vith RF	Q	Med	100	2	Increase in number of shafts and alcoves	Opt	uc
	(6) Plan for having room for fu double ring, later decision	ture	Q	Low	20		Increase tunnel diameter and 2 include above (5)		
	(7) General concern with injection/extraction kicker performance			Med	20		Increase no of kicker units and/or		
	Concern COI (1) Secondary Emission Yield too Ass high. >1.2 3/27 (2) Vacuum system design not imp robust 3/27 (3) High impedance of vacuum Cou chamber components para		MENTS	S/NOTES			UPDATES (my evaluation)		
			imes Cl ged to 07	F&S desig allow this	gns have possibili	been y. Ref JMP	Mitigation Techniques can lower e-clo density below instability threshold. Ef MT on vacuum system design, cost ar mpedance not yet evaluated, see 2,3.	ud fect of nd Very	low
			decisi ct on o 07	on is less ther syste	expensivers Ref J	e and less MP	Present vacuum system design incluc antechamber in dipoles (1) and more oumping speed. Cost will be available weeks.	in few High	
			d be in neter r	put to rev ange Ref	iew of des JMP 3/27/	sign 07	recent estimates indicate that nomina parameters are below the thresholds f microwave and other instabilities	nl For Very	low
	chamber components	para			E heeles	na imnact 🛽	Not needed since momentum compac	tion	
	chamber components (4) RF Margin	Coup on C	oled wit F&S Re	th items,5 of JMP 3/2	,6, nas iai 7/07		has been reduced	Very	low
	chamber components (4) RF Margin (5) Combination of concerns with R and Wiggler layouts	Coup on C F CF&S 3/27/	oled wit F&S Re S impac 07	th items,5 of JMP 3/2 ot coupled	,6, has fai 7/07 1 with 4,6	Ref JMP	has been reduced	Very Med	low
	 chamber components (4) RF Margin (5) Combination of concerns with R and Wiggler layouts (6) Plan for having room for future double ring, later decision (7) General concern with 	Coup on C F CF&S 3/27/ Ref J	bled wit F&S Re 3 impac 07 MP 3/2	th items,5 of JMP 3/2 ot coupled 7/07	,6, nas iai 7/07 1 with 4,6	Ref JMP	nas been reduced risk of 4,6 is reduced double ring is unlikely kickers satisfy most specifications b	Very Med Very ut still	low low

. •

.

e-cloud: from R&D results to DR design

- A working group, coordinated by an expert, defines the work/resources needed for a reliable evaluation and assigns the tasks to the available resources.
- At the conclusion of the work the results will be discussed at a DR meeting and a selection procedure will be setup in order to arrive to a widely accepted decision.
- Thursday 1 October 15:00: WG assessment and plans

Wednesday 30 September 13:30 - 15:30

13:30 S	. Guiducci	Introduction
13:40 M	. Korostelev (Webex)	RDR Lattice Update
14:10 J.	Urakawa	Status of ATF fast kicker experiment

Thursday 1 October 8:30 - 15:30

ast ions	Conveners Mark Palmer and Mauro Pivi
M. Pivi	Intro & SLAC update
Y. Suetsugu	KEKB update
R. Zwaska (WebEx)	FNAL update
tbd	CERN update
T. Demma	INFN update
coffee break	
N. Terunuma	Fast Ion Instability Studies at ATF
S. De Santis	LBNL update and TE Wave
M. Wendt	TE Wave at FNAL
L. Wang	Long lifetime electron in non-uniform magnetic fie
M. Palmer	CesrTA Status
lunch	
G. Dugan	CesrTA EC Simulations
J. Calvey	Mitigation Studies
All	CesrTA Planning Discussion
All	WG Assessment and Plans
	A st ions M. Pivi Y. Suetsugu R. Zwaska (WebEx) tbd T. Demma coffee break N. Terunuma S. De Santis M. Wendt L. Wang M. Palmer lunch G. Dugan J. Calvey All All

Thursday 1 October 16:00 - 17:30

SB2009 and Tec	chnical Design	Convener Susanna Guiducci
16:00 S	. Guiducci/M. Biagini	SB2009 lattice update
16:20 N	. Collomb	DR Layout and Mechanical Design
16:50 A		Plans for risk assessment, technical design, cost

Fryday 2 October 8:30 - 12:00

Low Emittanc	e Tuning	Conveners Mark Palmer and Junji Urakawa
8:30	M. Billing	CesrTA Optics and LET
9:10	D. Peterson (webex)	CesrTA X-Ray Beam Size Monitor
9:30	S. Kuroda	ATF plans in emittance tuning
10:00	coffee break	
10:30	M. Wendt	BPMs update
10:50	Y. Papaphilippou	CLIC Damping Ring Update
11:20	Y. Papaphilippou	Plans to reduce horizontal emittance at ATF DR

Strengthening ILC-CLIC collaboration

We are planning a join meeting on January

9/30/09 LCWA09, Albuquerque