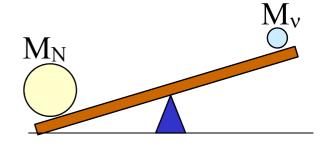
Right-handed neutrino in extra-dimension model

'09 10/2 Y. Takubo (Tohoku U.)

- T. Saito, T. Nabeshima, N. Haba, K. Fujii,
- S. Matsumoto, H. Yamamoto, K. Yoshioka (Osaka U., KEK, Kyoto U., Tohoku U., Toyama U.)


Seesaw mechanism in SM

Seesaw mechanism

• Neutrino mass can be small with the valance with mass of a right-handed neutrino (N):

$$M_{v} = \frac{v^2 y^2}{2M_{N}}$$

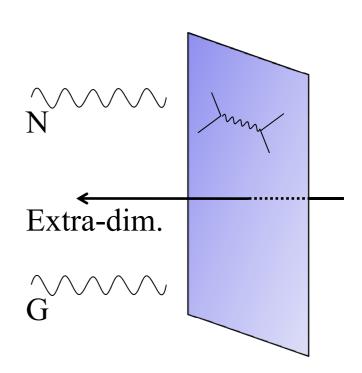
- > M_N: Mass of right-handed neutrino
- > y: Yukawa-coupling
- > v: Vacuum expectation value
- M_N must be 10^{14} GeV to make $M_v \sim 0.1$ eV for y=1.
- \rightarrow M_N is too heavy to observe at an experiment.

How about M_N in extra-dimension model?

N in extra-dimension model

N in extra-dimension model

- N can travel in the extra-dimension.
- M_N has the relation with radius of the extradimension (R). (hep-ph:0901.4596)

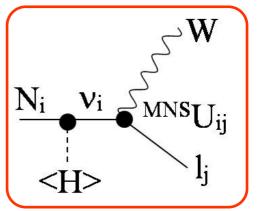

$$M_N = (2n-1)/2R (n=1, 2, ...)$$

- > n: index of the n-th KK mode
- M_N can be small for $1/R \sim 100 GeV$
 - > M_N : 100GeV for 1/R=100GeV and n=1.

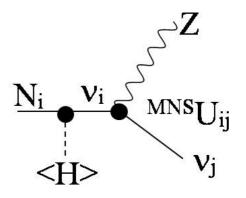
N can be observed at ILC if the extradimension exists at TeV scale.

 \rightarrow We studied the possibility to measure N.

Observation of N


Observation of N

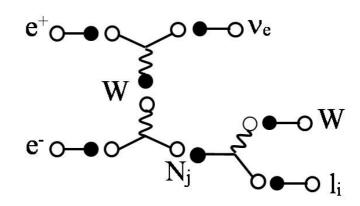
- N interacts with SM particles through Higgs coupling by weak-interaction.
- M_N can be reconstructed by using decay products from N with CC interaction.
 - $\rightarrow N_i \rightarrow v_j W.$ (i, j: lepton-flavor)
 - > Mixing of i and j is determined by the MNS matrix.


Analysis procedure

- Development of event generator
- Detector simulation
- Analysis

CC interaction

NC interaction



At first, the event generator was developed.

Development of event generator

N event generator

- Physsim was used to develop the event generator.
 - > The program based on HELAS library.
 - > The functions to connect the external and internal lines of the Feynman diagram is prepared.
- The programs to define the coupling and properties of N were developed.
- The xsec calculated by the event generator was consistent with hand-calculation.
 - > Total xsec: 66.1 fb

Xsec of vN \rightarrow vlW

l _i	Xsec	@ 500fb ⁻¹
e	19.9 fb	9, 950 ev
μ	14.9 fb	7,450 ev
τ	31.6 fb	15,800 ev

Analysis condition

Analysis condition

• M_N: 100GeV for the 1st KK mode

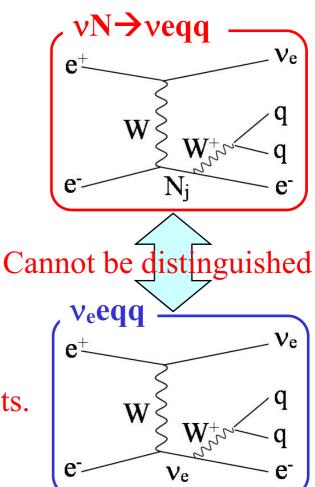
• E_{CM}: 500GeV

• Integrated luminosity: 500fb⁻¹

No beam polarization

• Beamstrahlung, ISR, and FSR are included.

Signal and BG

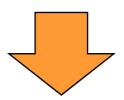

• $vN \rightarrow veqq$ events have large v_eeqq BG.

 \rightarrow The analysis was done for $vN \rightarrow v\mu qq$ events.

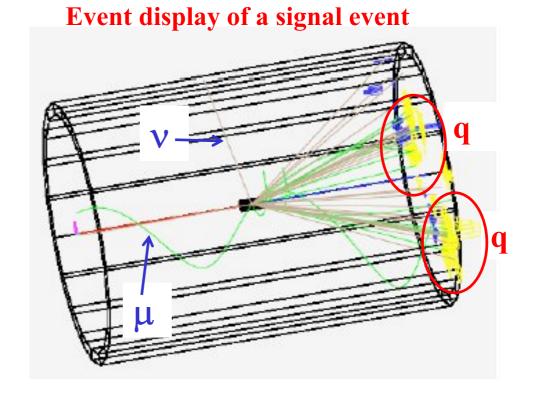
• Signal: $vN \rightarrow v\mu qq (10.1 \text{ fb})$

• BG: WW → νμqq (660fb)

 $ZZ \rightarrow vvqq/llqq (162.6fb)$



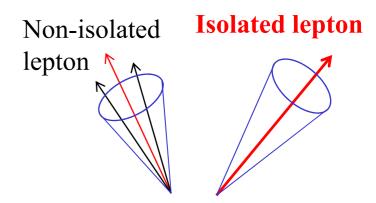
The detector simulation was performed.

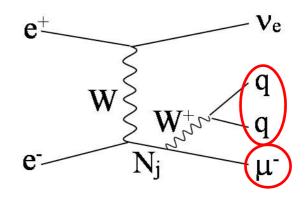

Detector simulation

The signal events prepared by the event generator were read by quick-simulator for ILD.

- One isolated charged lepton and 2 jets from W can be seen.
- → The signal events were simulated successfully.

The analysis was done after detector simulation.


Event reconstruction


N mass was reconstructed by using the information of decay products.

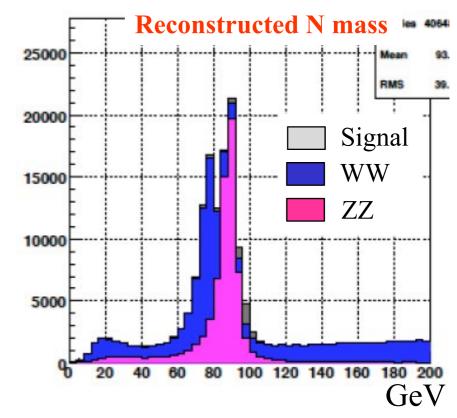
Reconstruction procedure

- Identification of an isolated lepton track
 - > The energy deposit of the track around
 - 5 deg. is required to be below 5GeV
 - > The most energetic track was selected.
- 2-jet reconstruction
 - > W is reconstructed.
- Reconstruction of N mass

$$> P_{\rm N} = P_{\rm W} + P_{\rm lep}$$

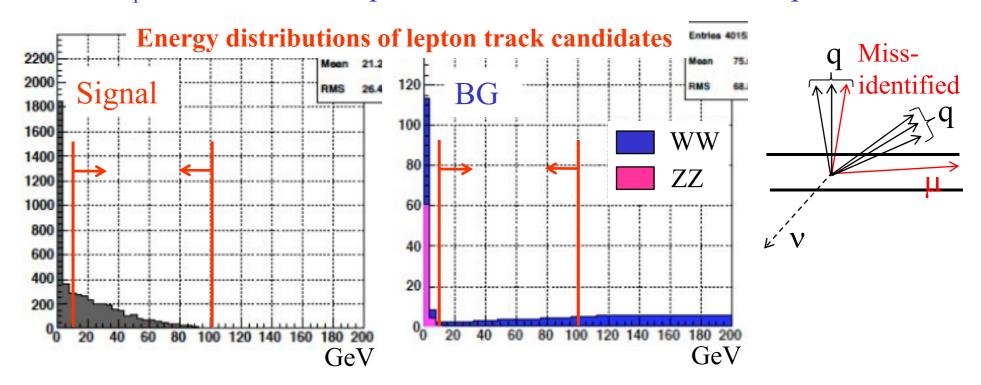


v_R mass distribution


N mass was reconstructed by using the information of reconstructed particles.

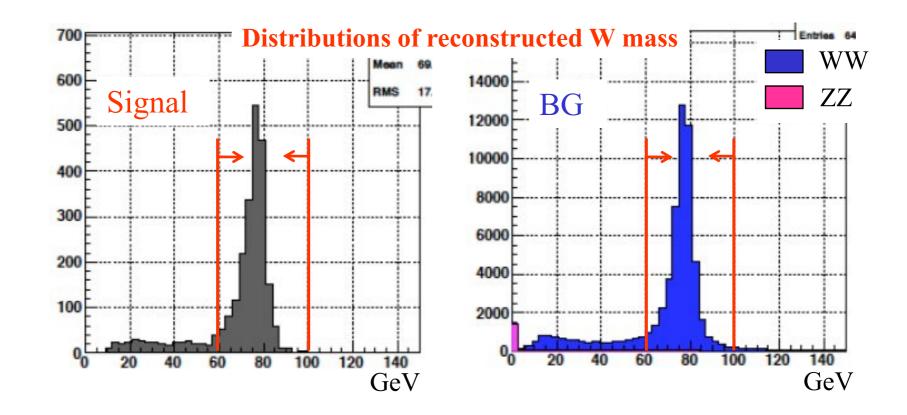
- Many BG events contaminate in the signal region.
 - > The mass peak of N overlaps with BG.
- The BG rejection is necessary.

The selection cut was studied.


- Lepton energy cut
- W mass cut
- W energy cut

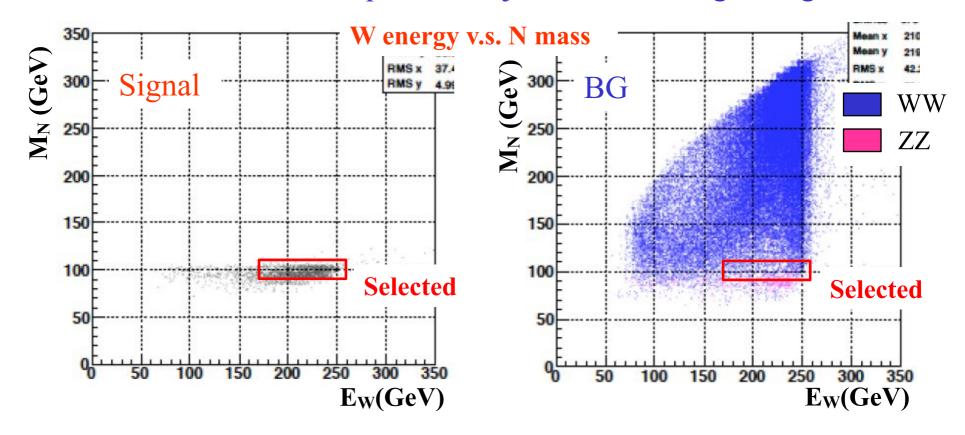
Isolated lepton track selection

The energy distribution of lepton track candidates was investigated.


- There are many events in low energy region for both signal and BG.
 - > Many isolated lepton tracks escape into the beam pipe.
 - > Charged tracks from jets are identified as the isolated lepton tracks.
- 10<E_{lep}<100GeV was required to select correct isolated lepton tracks.

W mass cut

A distribution of the reconstructed W mass was checked.


- There is a tail due to mis-reconstruction of jets.
- $60 < M_W < 100$ GeV was selected.

W energy cut

A distribution of the reconstructed N mass and W energy was checked.

- Signal region was set to 90-110GeV.
 - > Many BG contaminates in the signal region.
- 170< E_W<260GeV was required to reject BG in the signal region.

Cut summary

of events at each selection cut is summarized.

- BG events can be rejected efficiently.
- Efficiency for signal was 31%.
- → The sensitivity to the signal was evaluated.

	Signal	WW → νμqq	ZZ→vvqq/ llqq
No cut	5,040	330,000	81,300
$10 < E_{lep} < 100 GeV$	2,488	71,493	4,854
$60 < M_W < 100 GeV$	2,060	57,342	395
170 <e<sub>W< 260GeV</e<sub>	1,693	46,737	287
$90 < M_N < 110 GeV$	1,537	696	104
Efficiency	30.5%	0.2%	0.1%

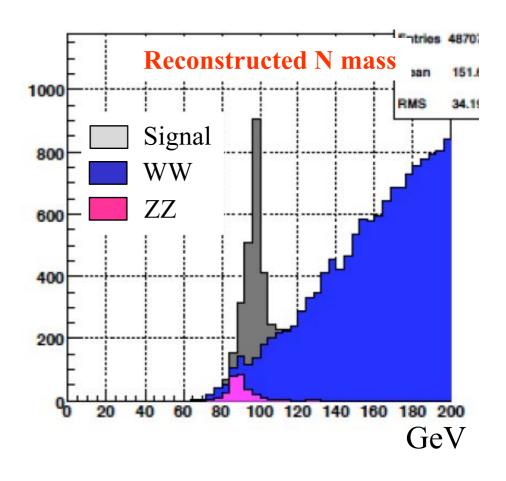
Signal significance

The sensitivity to N was estimated after the selection cut.

• Singal: 1,537

• BG: 800

→ Signal significance : 31.6


 $\rightarrow \Delta \sigma(\nu N \rightarrow \nu \mu qq)$: 3.2%

Right-handed neutrinos of the 1st KK mode can be observed at ILC.

The next step

- Xsec measurement of electron and muon modes.
- Study of the 2nd KK mode.

Summary

- The sensitivity of ILC to right-handed neutrino (N) in the extra-dimension model was investigated.
- The mass of N becomes about 100 GeV if 1/R=100GeV \sim 1TeV.
- The event generator for this model was developed with Physsim.
- The mass peak of the 1st KK mode was observed clearly.
 - > WW and ZZ BG can be rejected by selection cut.
- Xsec measurement of electron and muon modes and the 2^{nd} KK mode will be studied as the next step.