

CSIC

NIVERSITAT

Carlos Mariñas, IFIC, CSIC-UVEG

- What is a DEPFET?
- Elements. What's new?
- Thinning, irradiation, bonding...
- Test Beam campaigns 2008 and 2009
- Conection ILC Belle-II
- Summary and Conclusions

DEPFET – DEpleted P-channel Field Effect Transistor

➤ Each pixel is a p-channel FET on a completely depleted bulk (sideward depletion). Charge is collected by drift

> A deep n-implant creates a potential minimum for electrons under the gate (internal gate)

> Signal electrons accumulate in the internal gate and modulate the transistor current $(g_q \approx 600 \text{ pA/e}^-)$

Accumulated charge can be removed by a clear contact

Internal amplification

Low power consumption: Readout on demand (Sensitive all the time, even in OFF state)

 \circ Small pixel size ~25µm

 \circ r/o per row ~50ns (20MHz) (drain) \rightarrow Fully depleted bulk

- \circ Noise≈40e⁻ at high bandwith→Small capacitance and first in-pixel amplification
- o Thin Detectors≈50µm

SEPFE,

OAL

G

•Hybrid Board

- DEPFET 64x256 matrix
- Readout chip (CURO)
- Steering chips (Switchers)

•S3b Readout Board

- ADCs \rightarrow Digitization
- FPGA \rightarrow Chip config. and synchronization during DAQ
- RAM \rightarrow Data storage
- USB 2.0 board→PC comm.

CSIC

- > Improved input cascode (regulated) and current memory cells
- Integrated 8bit current based ADC per channel
- > Designed for 40 pF load at the input (5cm Drain line)
- Layout for bump bonding, radiation hard design
- > Power consumption per channel 2.0 mW (Analog) + 0.8 mW (Digital)
- > Digital hit processing done with second digital chip (DHP)

Test chip DCD2: 6X12 channels

CSIC

CSIC

LL.

VNIVERSITAT D VALENCIA OEPFE,

Pixel Dete

14

□ Longer matrices (256x64 pixels)

□ New DEPFET variants:

✓ Very small pixels (20µm x 20µm)

→ Test Beam 2009 at CERN

- ✓ Capacitively Coupled Clear Gate (C3G) \rightarrow New step forward in gain
- ✓ Shorter Gate lengths \rightarrow Increased internal amplification g_{a} , (6µm in PXD4; 5µm

in PXD5 \rightarrow Factor 2 better expected)

CSIC

SEPFE,

Vixel O

and 2009 campaigns.

✓ EUDET DUT

ALCPG09, Albuquerque, NM

VNIVERSITAT ID VALÈNCIA

CSIC

- MPV~3100 ADC counts
- $g_q \sim 650 pA/e^-$ (2x previous g_q , as expected)

We cannot ignore multiple scattering (even at 120 GeV) or telescope resolution. DUT resolution measurement obtained by plugging in a theoretical expectation for the Multiple Scattering (either by simulating the setup in GEANT4) and error from tracking fit (P. Kvasnicka).

Module #	0	1	2	3	4	5
X Residual (µm)	2.9	2.2	2.3	2.0	3.1	3.4
Y Residual (µm)	2.3	1.7	1.7	1.7	2.2	2.6
X Resolution (µm)	2.1	1.6	1.9	1.3	2.6	2.4
Y Resolution (µm)	1.5	1.3	1.2	1.2	1.8	1.7

120 GeV pions, perpendicular incidence, 32x24 μ m² telescope + 24x24 μ m² DUT (3)

Energy scan is a useful cross-check to disentangle intrinsic resolution-MS correctly.

From ILC to Belle-II

• Belle-II is more challenging rather than ILC in some points

	ILC	Belle-II	
Occupancy	0.13 hits/mm ² /s	0.4 hits/mm²/s	
Radiation	< 100 krad/year	> 1Mrad/year	
Duty cycle	1/200	1	
Frame time	25-100 µs	10 µs	
Momentum range	All momenta	Low momentum (< 1 GeV)	
Acceptance	6°-174°	17º-150º	

• ILC

- > Excellent single point resolution (3-5 μ m) > Small pixel size 25 μ m²
- ≻ Low material budget (0.12%X₀/layer)
- Belle II

CSIC

- > Modest spatial resolution (10 μ m) > Moderate pixel size (50 x 75 μ m²)
- > Few 100 MeV momenta \rightarrow Lowest possible material budget (0.15% X₀/layer)

z = 0

2306

VNIVERSITAT ID VALÈNCIA

- 2 thin pixel layers at 1.3 cm and 2.2 cm (subject to optimization)
- 4 layers with double sided Si-strip detectors
- Angular coverage $17^{\circ} < \theta < 150^{\circ}$, slanted at the end

CSIC

VALENCH

 \checkmark The DEPFET Collaboration is developing pixel sensors with integrated amplification.

- Good spatial resolution, low material budget and low power consumption
- \checkmark Building the system
 - Auxiliary electronics, bump bonding, cooling, mechanics
- \checkmark Sensors with small pixel size and new features (C3G and shorter gate length) have been characterized in Test Beam 2009
 - Better results than standard 2008 sensors: Up to 80% higher g_a
 - Spatial resolutions of 1.4 μ m on 24x24 μ m² CCG pixel (2008)

✓ The DEPFET is ready to be used as transparent and high precision vertex detector at Belle-II. <u>This Project has boosted the R&D for ILC DEPFETs</u>.

CSIC

Thank you very much!

ALCPG09, Albuquerque, NM

Carlos Mariñas, IFIC, CSIC-UVEG

- occupancy: ~0.2 hits/μm²/s (estimated for 1x10³⁵ cm²sec⁻¹, @ 1.8cm radius)
- spatial resolution : < 10 μm (r-phi) (can be less in z)
- pixel size: 50 μ m (r-phi) x ~90 μ m (z-axis)
- material budget < 0.15 % X₀ per layer
- read-out time: 10 μs
- radiation level: ~1 Mrad per year

- $17^{\circ} 150^{\circ}$ acceptance ($\eta = [0.55 .. 0.3]$)
- optional layer 0 at 1.3 cm radius with beam pipe up
- half-module active area: 4.9 cm x 1.2 cm (layer1)
- #pixels: 240 x 512
- r/o channels: 960 x 128 (4-fold parallel)
- sample (row) rate: 12 MHz

CSIC

NIVERSITAT

Just as a starting point for the R&D!

- 5 layer, old TESLA layout
- 10 and 25 cm long ladders read out at the ends
- 24 micron pixel
- design goal 0.1% X₀ per layer in the sens. region

Strategy to cope with the background:

- read ~20 times per train
- store data on ladder
- transfer the data off ladder in the train pause
 → row rate of 40 MHz
- read two rows in parallel, doubles # r/o channels but:
 - → row rate 20 MHz 🙂

Achievements and status

- ✓ Prototype System with DEPFETs (450µm), CURO and Switcher
 ✓ test beam @ CERN:
 - ✓ S/N≈110 @ 450 μ m ←→ goal S/N ≈ 20-40 @ 50 μ m
 - ✓ sample-clear-sample 320 ns \leftarrow → goal 50 ns
 - ✓ s.p. res. 1.3 μ m @ 450 μ m \leftarrow → goal ≈ 4 μ m @ 50 μ m
- \checkmark Thinning technology established, thickness can be adjusted to the needs of the experiment (~20 μm ... ~100 $\mu m)$
- $\checkmark~$ radiation tolerance tested with single pixel structures up to 1 Mrad and ${\sim}10^{12}~n_{eq}/cm^2$
- ✓ Simulations show that the present DEPFET concept can meet the challenging requirements at the ILC VXD.

- ✓ New rad. hard Switcher3 chips tested and functional
- ✓ Production of 2nd iteration of DEPFETs under test
- ✓ New r/o chips DCD designed for read-out of large matrices are under test

FET-Transistor integrated in every pixel (first amplification) Electrons are collected in "internal gate" and modulate the transistor-current Signal charge removed via clear contact

FET-Transistor integrated in every pixel (first amplification) Electrons are collected in "internal gate" and modulate the transistor-current Signal charge removed via clear contact

→ Correlated Double Sample

• Evidently a spread in the thresholdvoltages visible

ALCPG09, Albuquerque, NM

(*) 5..22 fA non irrad.

VNIVERSITAT

• Single pixel structures

- Electrical characteristics:
 - Threshold voltage shift
 - Subthreshold slope
 - G_m, G_q
 - Low frequency noise
- Leakage current
- Spectroscopic performance

		PXD4-10 MO2	PXD4-5 M05	PXD4-2 J14
	Туре	Protons, 30MeV	Neutrons, 1- 20MeV	Gammas - ⁶⁰ Co
	Fluence / Dose	1.2·10 ¹² p/cm ²	1.6·10 ¹¹ n/cm ²	913kRad
	1MeV n equivalent	3.1012 n _{eq} /cm ²	2.4 [.] 10 ¹¹ n _{eq} /cm ²	n/a
L L	- 1		Y	
VERSITAT		LBNL	GSF Munich	
			<u>c</u> 1	

Double pixel structure

Merging two pixels (common source) for reduce the size

CSIC

LL.

VNIVERSITAT D VALENCIA

Internal Amplification

The internal amplification measures the change in drain current in the presence of charge "Pixel Definition of the internal gate:

OEPFE,

$$g_q = \frac{dI_{ds}}{dQ_{int}} \sim \frac{\sqrt{I_{ds}}}{\sqrt{W}L^{\frac{3}{2}}}$$

- \checkmark Increasing g_q increases SNR
- ✓ Playing with channel length we can achieve up to $g_q \sim 1 \text{ nA/e}^-$
- ✓ PXD4 has L=6µm, some matrices in PXD5 have now L=4µm \rightarrow Expect factor 2 better S/N

