CMOS pixels with Charge Storage : ISIS2

R Gao, R Gauld, J J John, Y Li, **A Nomerotski**, J Sikorowski (U. Oxford) Ch Damerell, Z Zhang (RAL) A Holland, G Seabroke (CEI, Open U) M Havranek (Prague) K Stefanov (Sentec Ltd) A Kar-Roy (Jazz Semiconductors) R Bell, D Burt, P Pool (e2V Technologies)

and LCFI collaboration

ALCPG09, 30 September 2009

Outline

- ISIS introduction
- ISIS1
- ISIS2 Test structure
- ISIS2 Full array

Summary

Two Approaches to Time Slicing

- Large bkg \rightarrow need 20 time slices in one bunch train
- Can do
 - Fast readout → CPCCD, MAPS, DEPFET, …
 - In pixel storage \rightarrow ISIS
- In pixel storage does not need power cycling mechanical implications

ISIS – In-Situ Storage Image Sensor

- Each pixel has internal memory implemented as CCD register
 - Charge collected under a photogate
 - Charge is transferred to 20-pixel storage CCD in situ during collisions
 - Conversion to voltage and readout in the 200 ms-long
 - quiet period after collisions

A.Nomerotski

ISIS as Imaging Sensor

First proposed for visible light

ETOH et al. IEEETRANS ELECTRON DEVICES, 50, (2003) pp 144-151

- 103 sequential images at 312x260 resolution
- Max frame rate: 1 MHz
- CCD camera by DALSA
 - 16 sequential images at 64x64 resolution
 - Pixel : 100 x 100 μ m²
 - Max frame rate 100 MHz (!)
 - Used for Imaging Mass Spectroscopy
- Interest for fast X-ray detection at light sources (XFEL)

Fast framing DALSA camera

ISIS1

- e2V CCD ~2 μ m process
- pixel 160 x 40 μ m; 5 storage cells
- Two variations : with and without p-well

ISIS1 Results

- Tested with ⁵⁵Fe
- High p-well doping protect storage register
- Look at ratio of charge collected at photogate to charge collected at storage pixel
 - If increase clock voltage, get punch through under in-pixel CCD, R drops
 - Lower p-well doping, charge reflection decreases
- 2008: ISIS Proof of Principle as particle detector

ISIS1 publications:

Zhang et al

Nucl.Instr.Meth. A607 (2009) 538

Testbeam results

J.J.Velthuis *et al.* Nucl.Instr.Meth..A599 (2009) 161 D. Cussans *et al.* Nucl.Instr.Meth. A604 (2009) 393

7

Next generation ISIS: ISIS2

- Received ISIS2 from Jazz Semiconductor in Oct 2008
 - Process: 0.18 μ m with dual gate oxide
 - Developed special process: buried channel and deep p+ implant
- First time ever CCD buried channel in a CMOS process

A.Nomerotski

ISIS2 Process Splits

- Reset transistor
 - Surface channel
 - Buried channel
- Other splits
 - CCD gate width
 - With and without deep p+
 - With deep p+ but no charge collection hole
 - Changes in dopant concentrations of ~20%

ISIS2 Test Results

Test Structure

- Same as full array but no CCD transfer gates
 - Custom made 4T structure
- Allowed to establish operating conditions
 - Note tapered transition from Output/Summing gates to Output node

Small feature size

- Small capacitance of output node → expect excellent noise performance
- Edge effects and 3D fringe fields are very important

ISIS2 Fringe Effect

Potential under the output gate pulled up by output node at 5V

- Charge leaked to output node directly from photo gate

TCAD Simulations

- 3D simulations confirmed large fringe effects
 - Silvaco TCAD
 - Used 2D simulation before

Readout Rate

- Processing/design flaw: large resistance of polysilicon gates
 - Gates are not doped
- It takes ~ a few ms for one transfer between two neighbouring gates
 - This means large dark current accumulated.
- Low temperature reduces dark current but also further increases the gate resistance
- Slow clock but anyway have efficient charge transfer

X-ray Calibration

- Calibration with Fe55 (1620e- and 1780e- lines)
 - Hits on output node (unclocked)
 - Hits transferred from photo gate
- Measured CTE, noise at different T
 - Sensitivity 24 μ V/e-
 - Noise 6 e- achieved for optimum CDS timing

Charge Transfer Studies

Leakage current

IDR: charge injection

- Can exercise by transferring charge from dark current, charge injection or LED
 - Good linearity
- Well capacity dependent on Summing Gate bias -5-10ke for 1x5 μ m PhotoGate

ISIS2 Main Array

ISIS2 main array

- 256X32 pixels
- Pixel size $80x10 \ \mu m^2$
- 20 storage cells
- Imaging pixel 40x20 μm²

ISIS2 Pixel Layout

A.Nomerotski

First successful charge transfer in main array on 21 July 2009!

Readout Time Minimization

Optimization of time sequence

- Reducing time for transfer gates, 85% of SG time
- Run at highest clock frequency

Max Readout Speed

- 8 Hz for 5 rows
 - Achieved at room T
 - Each additional row adds ~few ms

Clocking Neighbours

- Clears charge from neighbouring PGs
- Reduce leakage current in row under test

Comparison of deep p+ splits

- 1: No deep p+ shield (YELLOW)
- 2: Deep p+ equal to PG over lap over buried channel (GREEN)
- 3: Same as 2 with extra 0.25um on all sides (PURPLE)
- 4: Deep p+ shield without aperture (PINK)

Dark Current Comparison

 Different dark current for different p+ splits

Channel 1 (No deep p+)

Channel 2 (Deep p+ with aperture = PG)

Channel 3 (Deep p+ with wider aperture)

Channel 4 (Deep p+ without aperture)

⁵⁵Fe Calibration

Filled area: PG up 50 ms.

Future plans

• Clearly already achieved more than could have hoped with just one sensor iteration!

Next

- Running of full array: 32 columns x 128 rows
 - Currently at 4 columns x 5 rows
- Do laser scans to map CCE and beam test to see charged particles

 Currently ISIS sensors are not funded in the UK due to STFC crisis and we are looking for ways to produce next sensor, ISIS2.1 or ISIS3

Summary

- ISIS2 successfully demonstrated feasibility of multiple charge storage and transfer in CMOS process
 - First implementation of CCD in CMOS process
 - 10 x 80 um pixel with 20 cells
 - Low noise
 - Efficient charge transfer
 - Slow rate understood, can be easily fixed
- Next: Laser testing & testbeam

Need to keep this promising approach to LC vertexing alive!

ISIS1 Charge Collection

Tested with 55Fe

ISIS1 Test Beam 2007

- S/N = 37
- Position resolution in xdirection 10.8 μm
 - 60 µm → some charge sharing
 - Sqrt(60 μ m) = 17.3 μ m
 - Included large multiple scattering
- Little charge sharing in ydirection (140 μm across pixel)

ISIS2 Charge Collection

Simulated charge collection 2D TCAD

ISIS2 Charge transfer

 Simulated charge transfer to photogate and to storage cells in 2D TCAD – all function with high efficiency

A.Nomerotski

ISIS2 PhotoGate

Cross section under photogate

