Studies and Plans for RPC Muon Detectors

Henry Band
University of Wisconsin
Changguo Lu
Princeton University

SID RPCs

- RPCs are the baseline detector choice for SiD
 - Low cost
 - Easily made in a variety of shapes
 - Adequate performance & reliability
- Bakelite RPCs
 - CMS ATLAS BESIII DAYABAY OPERA

- Proposed SiD RPCs
 - Avalanche mode, KPIX readout, IHEP Bakelite

SiD Muon

- Backgrounds
 - Barrel
 - Beam halo induced muons
 - 3 10⁻³/cm²- pulse train
 - Endcap
 - 2 y hadrons & u
 - 4 10⁻² /cm²- pulse train
- · Reliability is still a concern
 - Good results LHC studies, BaBar low rate RPCs
 - Continue studies of RPC aging
 - Keep scintillating strip option

RPC Baseline

- Double gap RPCs operated in avalanche mode
- RPC and steel
 boundaries staggered to
 minimize geometric
 inefficiencies
- > 93% eff. per layer
- Digitized by KPIX(64or128)

Preliminary RPC/KPIX Data

- "Proof of Concept" last year
- 64 channel RPC interface board with KPiX7
- In collaboration with SLAC KPiX group, R.Herbst, D. Freytag
- First tests -AC coupling
 - 1. Optimize Ω & capacitor values
 - 2. Protection circuits
 - 3. KPIX readout modes

- Italian Bakelite test RPC
 0.5m by 0.5 m
- BaBar avalanche gas 75.5% Freon 134a, 19.4% Argon, 4.5% isobutane, 0.6% CF6
- Strips 3.8 cm by 50 cm

RPC/KPIX Studies

RPCsum HV Scan **KPiX - DC resets** Mean Ped. subtracted strip sum RPCsum Entries 9000 V Mean RMS 고대 10000 Ped. subtracted strip sum **RPCsum** Mean 9350 V **KPiX** - periodic resets Ped. subtracted strip sum RPCsum Entries Mean RMS RPCsum Ped. subtracted strip sum Entries 45295 Mean RMS 9700 V 10/02/0 fC -> H. Band -LCWA 09 fC ->

Charge Sum of all strips Charge of Max. strip Charge Sum of strips above cut

3.10145e+00 2.61547e+01 3.14008e+01

Less than half of the charge is in the max. strip

10/02/09

Strips 3.8 cm wide

strips ->

H. Band -LCWA 09

2009 Milestones

- Relocate test-stand
- Optimize RPC/KPiX
 interface board design to
 maximize efficiency and
 minimize strip multiplicity.
- Make current, rate, and efficiency measurements of IHEP test RPCs operating in avalanche mode.
- Test KPiX (v. 7 & v. 8)
 trigger and reset operating modes.

2010-11 Milestones:

- Readout multiple KPiX chips
- Use position and charge information from multiple RPC/KPiX devices to make fitted cosmic ray tracks
- Study position resolution of RPC/KPiX tracks,
- Test HCAL prototypes in teststand

RPC Studies

Ongoing programs at Princeton and Wisconsin to understand RPC aging (Bakelite/melamine)

- Princeton C. Lu
 - IHEP RPCs
 - Bakelite/melamine from Chinese industry
 - No linseed oil design
 - Used in BESIII, DayaBay,
 - Proposed for SiD
 - Surface quality
 - Source studies

- · Wisconsin H. Band
 - BaBaR forward RPCs
 - Construction similar to ATLAS/CMS RPCs
 - 6 years of data
 - Huge range of background & signal rates
 - Analysis of trends & correlations
 - Autopsy of aged RPCs

RPC R&D - Princeton

- Focus on IHEP RPCs
- DAYABAY streamer mode operation
- Accelerated aging studies with source

Previous HF studies

Figure 4. HF vapor corrosive action on BaBar Bakelite surface.

Figure 5. HF corrosive action on BES III bakelite surface.

10/02/09

Surface finish

CMS IHEP Optical photos of inner surfaces before after aging 2.25mm Surface roughened Aged RPCs Discharge points Anode Cathode

H. Band -LCWA 09

12

Accelerated Aging studies

- Co-60 source
- Aging ~ 30 times
 faster than cosmic +
 chamber noise
- 2 rounds
 - 1 month at position 1
 - 1 month at position 9

This jump of 1.3 μ A is due to the source, 1.3 μ A x 40% = 0.5 μ A concentrated on 10cm radius circle area.

Dark current change with source

At the end of the second round of aging we surveyed the dark current response in 9 regions. By placing the source on each region and measuring the dark-current jump *dl*.

Full size RPC, dI larger, small relative variation.

Aging RPC, dl much smaller, larger relative variation.

Efficiency map after 2 rounds of aging

Efficiency survey results at the end of second round of aging tests.

Two lowest-efficiency points show a correlation: lower efficiency related to lower current jump, but the other regions did not follow this trend.

C. Lu - Princeton Expanded Aging Test 4 new RPCs - Additional 23 days

Upper trigger array (x and y, 4 for each).

Copper plates, Co-60 source sits on.

Aging test RPCs.

Bottom trigger array (x and y, 4 for each).

Plus oiled IHEP RPC

Efficiency & currents after Source

Exposure

23 days

RPC R&D - Princeton

- Summary
 - Changes in both efficiency and current observed
 - Region near gas
 outlet & under source
 most sensitive
- Reinforces previous findings that streamer mode operation at > 10 Hz/ cm² is a problem

- Beyond FY2009
 - Collaborate with
 IHEP and
 Gaonengkedi to try
 out various new
 Bakelite electrodes
 - Bench top test robustness to HF
 - General performance test for new Bakelite electrode
 - Aging test for the new RPCs.

BaBar Forward RPCs

BaBar 2nd generation RPCs were installed in the forward endcap muon detector All initially streamer mode, some converted to avalanche mode

12 RPC HV modules per layer, grouped into 6 gas volumes

Gas flow

RPC Studies

- · Over 200 2nd generation RPCs were installed in fall 2002
- · Run from Nov.02 Apr. 08

Accumulated a lot of data for an aging study:

- from chambers: current, rate, efficiency
- environment: temperature, humidity, gas flow

Need to decouple the aging effect from other kind of failures ~ 8%:

- gas problems
- HV problems

Take into account the different operating conditions

Noise Rate and Currents with Cosmic Rays

- Both noise and currents have increased over 5 years
- Average noise rate 400 Hz → 3 kHz (area 1.5 2 m²)
- Average current < 1 μA → 12 μA

Noise Rate and Currents with Cosmic Rays

- About ¾ of current increase due to rise in ohmic current (Estimated by extrapolating the I vs V curve below the gas gain turnon)
- Remaining ¹/₄ strongly correlated with increased noise rate

- Trying to understand causes of:
 - Ohmic current
 - No correlation with integrated current seen
 - Increased noise

Cosmic vs Collisions

BaBar RPC Plans

- RPCs finally being removed from BaBar steel (this week)
- Two aging symptoms not understood in detail
 - Rate dependent inefficiency around beam line
 - Rate independent inefficiency near gas outlets
- Sample of 10 chambers chosen for further study/ autopsy
- Will try to correlate measured bulk properties of the Bakelite and graphite and surface condition of the cathode/anode with these failure modes

Summary

- KPiX readout of RPCs looks very promising
- Still much to be do to optimize interface, KPIX operation
- RPC aging studies have mostly done in streamer mode.
 - Exception LHC avalanche mode at high rates OK
 - Most, if not all aging observed in streamer mode, associated with high rates >> 1 Hz/cm²
 - Unclear if IHEP RPCs are more resistant to aging