Muon measurement and identification in 4th concept

John Hauptman, Iowa State University ALCPG 09, Albuquerque, NM 29 Sept '09 - 3 Oct '09

Two innovations:

1. No iron: flux return by second solenoid

- (many benefits in MDI, push-pull, access, 2-gamma, etc.)
- for muons, precision momentum measurement after solenoid in a largevolume spectrometer.
- use energy conservation from main tracker, calorimeter, and spectrometer for muon ID tagging.

2. Dual-readout fiber calorimeter: unique muon ID

- Cerenkov angle is larger than numerical aperture caapture angle of fiber, therefore S = dE/dx + bremsstrahlung, C = bremsstrahlung
- $S-C = dE/dx \sim 1.1$ GeV in 10 int-length DREAM module.

Necessarily, muons are measured by all systems of a detector

Muon spectrometer measurement (iron-free)

Dual-solenoids (A. Mikhailichenko, Cornell)

- inner solenoid like CMS
- outer solenoid and end coils driven in opposite direction
- essentially no fringe field
- outer solenoid is big, but not a problem

Muon trajectories from the interaction point

Muon energy-momentum measurements

For $p_{trk} \sim 100 \text{ GeV/c}$ in central trackerMuon is measured $dE \sim 20 \text{ GeV}$ bremsstrahlung in calorimeter \smile better than few % $p_{mu} \sim 80 \text{ GeV/c}$ in muon spectrometerin every system:

Single muons No beam bkg

Tracking resolutions vs. P(GeV/c)

track	fit results	multiple
parameter	stochastic term	scattering term
$\sigma(1/p_T)$	$3.9 \times 10^{-5} (\text{GeV/c})^{-1}$	\oplus 7.9 × 10 ⁻³ /p _T
σ_{θ}	$0.69 \text{ mrad}/p_T^{0.80}$	\oplus 0.027 mrad
σ_{ϕ}	$1.25 \text{ mrad}/p_T$	\oplus 0.027 mrad
σ_d	14.9 $\mu { m m}/p_T^{0.57}$	\oplus 2.0 $\mu\mathrm{m}$
σ_z	$17.7 \ \mu { m m}/p_T^{0.58}$	$\oplus~2.9 \mu{ m m}$

P, GeV

Muon Spectrometer tracking performance

(same cluster-timing tracking as in main tracker)

Event Display in ILCroot

Can the momentum resolution in the annulus be improved?

- This would provide a tighter energy constraint
- Pion rejection increasing to 50-100
- Might also be useful for "new physics" that appears at long times, leaving tracks behind the calorimeter.

The resolution depends on the point resolution in the tracking chambers, $\sigma_x \sim 200 \mu m$. We assumed this for practical reasons and with a careful look at the ATLAS muon system. In the spirit of a "concept" we could have assumed $\sigma_x \sim 50 \mu m$.

Also, on B and L² between the solenoids. It turns out that BL² is independent of the radius of the outer solenoid, so we cannot easily gain in L², and B from the inner solenoid is at the CMS-limit for current densities. This invariant is because the inner solenoid flux density is 3.5T = 3.5 Webers/m². This number of Webers must fill the annulus of area [$\pi R^2_{outer} - \pi R^2_{inner}$]. Increasing R_{outer} increases L linearly and decreases the flux density as the square, so BL² is approximately constant.

Dual-readout (fiber) identification

μ *ID* in dual-readout: $\theta_{Cerenkov} > \theta_{num. aperture}$

 $(S \sim dE/dx + brems \& C \sim brems)$

S-C ~ dE/dx ~ 1.1 GeV (in DREAM) for μ

The "proof-of-principle" DREAM module

S = scintillating fibers Q = quartz (clear) fibers

DREAM: Structure

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
 - Hexagonal towers (19), each read out by 2 PMTs

Simply built, inexpensive, proof-of-principle DREAM module $(10 \lambda_{INT})$

Muons tagged by scintillation counter downstream and behind an additional $8 \lambda_{INT}$ of concrete

Calibrate with 40 GeV electrons: set GeV/ADC for both scintillation and Cerenkov to get <data> = 40 GeV

Dual-readout: Scintillation vs. Cerenkov plot

μ - π descrimination (DREAM data) π rejection ~ 10⁵:1

π rejection ~ 10⁴:1

100 GeV μ⁻ 100 GeV π⁻ S-Q vs (S+Q)/2 : R189 : pion : 100 GeV 0 Entries 4505 Mean x 1.225 78198 Entries 0+S120 Mean y 2.274 Mean x 16.94 RMS x 0.5664 Mean y 74.52 RMS y 1.111 RMS x 6.755 Integral 4392 RMS y 10.7 (GeV) 100 Integral 7.806c+04 (S+C)/2 (GeV) 6 80 5 (S+C)/2 60 3 2 20 01 0 -10 0 2 3 5 4 20 30 10 40 50 S-Q S-C (GeV) \longrightarrow S-C (GeV) \longrightarrow

π rejection ~ 10³:1

40 GeV μ⁻

Weak muon ID at low momenta: CluCou clustercounting is Poisson: better dE/dx specific ionization resolution ~3% (no Landau tail)

View Experimental Data file: Run51 He 90C4H10 10 1750 1.root

dE/dx resolution TPC LBL/PEP4 (using truncated mean ~6%)

0.1

10

Momentum (GeV/c)

μ

Energy deposit per unit length (keV/cm)

24

21

Summary

Good kinematic fix on muons after solenoid; pion rejection ~ 10-50 Dual-readout ID (most effective for isolated, or nearly isolated, tracks)

Spares

Particle Identification:

must be a priority for any new detector at a precision collider

- *uds* quarks (jet energy resolution)
- *c,b* quarks (vertex tagging)
- *t* quark (reconstruction)
- *electron* (dual-readout)
- *muon* (dual-readout and iron-free field)
- *tau* (reconstruction)
- *neutrino* (by subtraction; resolution)
- *W*,*Z* (hadronic jet reconstruction)
- photon

(BGO dual readout)