# **Benchmark Reactions for the LOIs**

- Study of Higgs Recoil Reaction ee  $\rightarrow$  HZ  $\rightarrow$  I<sup>+</sup>I<sup>-</sup> -



Roman Pöschl LAL Orsay





Linear Collider Workshop LCWA09 Albuquerque NM Sept./Oct. 2009

Thanks to T. Barklow, H. Li and G. Tassielli for helping to prepare the talk

References: LOIs by SiD, ILD and 4<sup>th</sup> Concept + IDAG answer documents PREL-LC-PHSIM-2009-003

## **Higgs-strahlung Process**



Higgs Recoil Mass:

$$M_{h}^{2} = M_{recoil}^{2} = s + M_{Z}^{2} - 2E_{Z}\sqrt{s}$$

#### **Benchmark Parameters:**

 $\sqrt{s}$  = 250 GeV – fairly close to HZ threshold Luminosity 500 fb<sup>-1</sup> shared equally between different Beam Polarisation modes:

 $e_{L}^{-}e_{R}^{+}$ :  $P_{e^{-}} = -80\%$   $P_{e^{+}} = +30\%$   $e_{R}^{-}e_{L}^{+}$ :  $P_{e^{-}} = +80\%$   $P_{e^{+}} = -30\%$ 

Realistic Beam Conditions (2007 – ILC Reference Design Report) Incoming Beam by GUINEA PIG Beam Energy Spread 0.18% for e<sup>+</sup> and 0.28% for e<sup>-</sup> Beam Strahlung in agreement with Yokoya-Chen formula

Results will be given w/o crossing angle of 14mrad!!!

(Main) Background Processes

**Boson Pair Production** 





## **Proposed Detector Concepts**



Xtal Calorimeter Dual Readout

## Calorimeter optimised for Particle Flow

#### Signal Selection in ILD – Using Calorimetric Information



LCWA09 Albuquerque NM

#### Signal Selection in ILD - Track Selection

Signal consists of two oppositely Charged Tracks



## **Background Rejection**

#### <u>SiD</u>

```
\begin{array}{l} 87 < M_{dl} < 95 \; \text{GeV} \\ |\cos \theta_{l+}|, \; |\cos \theta_{l-}| < 0.99 \\ |\cos \theta_{dl}| < 0.85 \\ |\cos \theta_{miss.}| < 0.99 \end{array}
```

- Very tight constraint on Z-Mass for dilepton system

#### <u>ILD</u>

 $\begin{array}{l} \mathsf{P}_{\mathrm{T,dl}} > 20 \; \mathrm{GeV} \\ 80 < \mathsf{M}_{\mathrm{dl}} < 100 \; \mathrm{GeV} \\ 0.2 < \mathrm{acop} < 3.0 \\ \Delta \; \mathsf{P}_{\mathrm{Tbal.}} > 10 \; \mathrm{GeV} \\ |\mathrm{cos} \; \theta_{\mathrm{miss.}}| < 0.99 \\ 115 < \mathsf{M}_{\mathrm{recoil}} < 150 \; \mathrm{GeV} \\ \mathrm{Dedicated} \; \mathrm{cuts} \; \mathrm{for} \; \mathrm{radiative} \\ \mathrm{events} \\ \mathrm{Multivariate} \; \mathrm{Analysis} \end{array}$ 

- Relaxed constraint on dilepton Mass
- Cuts more closely 'tailored' to background

Signal/Background > 30%

#### $4^{th}$

```
\begin{array}{l} 72 < M_{_{dl}} < 110 \; \text{GeV} \\ 102 < M_{_{recoil}} < 168 \; \text{GeV} \\ |\cos \theta_{_{l+}}|, \; |\cos \theta_{_{-}}| < 0.98 \\ P_{_{T,max}} > 20 \; \text{GeV} \\ |\cos \theta_{_{miss.}}| < 0.99 \\ \text{DCA for } e, \mu < 6 \text{mm} \end{array}
```

Particle ID by muon spectrometer and exploitation of mult r/o of Calorimeter

```
Additional Tracks in Default Analysis!!!
```

## Remaining background: Boson Pair Production Bhabha Background

#### Signal and Background – Examples





#### **Extraction of Results**

Results extracted without assumption on shape of spectrum

SiD

## Linear Least $\chi^2$ fit to bin contents:

$$\hat{N}_{i} = \hat{N}_{ibkg} + \hat{N}_{i,signal} + \frac{\hat{N}_{i}}{M_{h}} (M_{h} - 120 \ GeV)$$

(Simplified) Kernel Estimation for signal

$$F_{S}(x) = \frac{1}{N} \sum_{j=1}^{m} n_{j} G(x; t_{j}; h_{j})$$

$$h_{j} = \left(\frac{4}{3}\right)^{1/5} N^{-1/5} \Delta x \sqrt{\frac{N}{n_{j}}}$$

4<sup>th</sup>

Convolution of Gaussian and Second Order Polynomial

$$\chi^{2}(M_{h}) = \sum \frac{(N_{i} - \hat{N}_{i}(M_{h}))^{2}}{s_{i}^{2}}, \quad s_{i} = \sqrt{\hat{N}_{ibkg} + N_{isignal}}$$

$$x \rightarrow x' = x - M_h$$

Calculated using training samples around M<sub>h</sub>=120 GeV

 $\hat{N}_{i}$ 

 $M_{I}$ 

Background approximated by second order polynomial

#### **Different/Complementary methods to extract Results**

Results for: 
$$e_R^- e_L^+$$
:  $P_{e^-} = +80\% P_{e^+} - 30\%$ 



#### Sources of Bremsstrahlung



Landscape of ILD Detector by Bremsstrahlung

#### Energy loss by Passive Material



#### Bremsstrahlung Recovery

#### Collecting Bremsstrahlung Photons in elm. Calorimeter

Gain: Higher Statistics in Signal Region Penalty: Worse resolution by low energetic photons  $\sigma/E \sim 17\%/\sqrt{E}$ 



Statistical Gain "beats" modest energy resolution

#### Bremsstrahlung Recovery in the 4<sup>th</sup>

#### Xtal calorimeter: superb elm. energy resolution $\sigma/E \sim 3\%/\sqrt{E}$

Muon Channel

**Electron Channel** 



... Comparable (statistical) Precision in Electron and Muon Channel!!!

Result of emphasising the role of Calorimetry!!?

Note: Results here for Model Dependant Analysis (Requirement of add. Charged Tracks)

Results for:  $e_L^- e_R^+$ :  $P_{e^-} = -80\%$   $P_{e^+} + 30\%$ Model Dependant Analysis: Additional Tracks required

Muon Channel



## $\gamma\gamma$ - Background

Processes:

γγ **→** e⁺e⁻

 $\gamma \gamma \rightarrow \mu^{\dagger} \mu^{-} \gamma \gamma \rightarrow hadrons$ 



#### Beam Background has only little effect on recoil mass spectrum

#### Influence of Machine Parameters



#### Uncertainties of incoming beams are dominant source of Statistical Error (even in Electron Channel)

## Shopping List beyond LOI

- Do we want/need to compare the performance of Detector Concepts? Agreement on common set of cuts would be helpful!
- Study of systematic errors entirely missing (Lack of time, manpower) Need to identify major sources of systematic errors Knowledge of Detector R&D needs to go into Physics Studies e.g. Answers to IDAG contain parameters on tracking precision More guidance to Detector R&D by Physics Studies!? Disjunct groups !!?
- Conclusions for Detector R&D from LOIs? LOI should lead to directions for R&D, does it?
- Feedback to change of Machine Parameters

Need ability to ponder timely the influence of Physics Performance

## **Conclusions and Outlook**

- Detector Concepts promise precision measurement of Higgs-strahlungs Process  $\Delta M_{h}$ : O(40 MeV)

 $\Delta \sigma_{_{\rm H7}} > 5\%$ 

Detector Layout allow for Efficient Background suppression

→ up to Six Orders of Magnitude!!!!

LOIs witness enormous physics potential of ILC and its Detectors!!!

- Electron Channel "suffers" from Bremsstrahlung

Material Budgets need to be watched closely!! First Algorithms for recovery successfully applied!! Excellent Calorimetry can help!?

- Higgs Recoil mass channel is very sensitive to Beam Parameters!!!

Systematic Effects
 Algorithms developped for LOIs allow for study of systematic errors e.g. via ee → ZZ

- LOIs are not the end but the start Directions for R&D emerging from LOIs? Tables with Quantitative Results

#### ILD - Model independent Analysis

| Pol.                           | Ch.           | M <sub>H</sub> (GeV)  | $\sigma$ (fb)               |
|--------------------------------|---------------|-----------------------|-----------------------------|
| $e_R^- e_L^+$                  | $\mu^+\mu^-X$ | $120.006 \pm (0.039)$ | $7.89 \pm 0.28$ ( $3.55$ %) |
| $\mathcal{L}=250~{ m fb}^{-1}$ | $e^+e^-X$     | $120.005 \pm (0.092)$ | $8.46 \pm 0.43$ ( $5.08$ %) |
|                                | merged        | $120.006 \pm (0.036)$ | $8.06 \pm 0.23$ ( $2.91$ %) |
| $e_{\rm L}^- e_{\rm R}^+$      | $\mu^+\mu^-X$ | $120.008 \pm (0.037)$ | $11.70\pm0.39$ ( $3.33$ %)  |
| $\mathcal{L}=250~{ m fb}^{-1}$ | $e^+e^-X$     | $119.998 \pm (0.085)$ | $12.61\pm0.62$ ( $4.92$ %)  |
|                                | merged        | $120.006 \pm (0.034)$ | $11.96 \pm 0.33$ ( 2.76 %)  |

Table 13: Resulting Higgs mass  $M_H$  and cross section  $\sigma$  of the *MI Analysis* using *Kernel* Estimation.

For details and further results using alternative fit methods and a Model Dependant Analysis, see PREL-LC-PHSIM-2009-003

| 80eR lumi             | 80eL lumi             | Mode                    | $\Delta M_{H}(\text{GeV})$ | $\Delta \sigma_{_{ZH}}$ / $\sigma_{_{ZH}}$ |
|-----------------------|-----------------------|-------------------------|----------------------------|--------------------------------------------|
| $250 \text{ fb}^{-1}$ | $0 	ext{ fb}^{-1}$    | $e^+e^-H$               | 0.078                      | 0.041                                      |
| $250 \text{ fb}^{-1}$ | $0 	ext{ fb}^{-1}$    | $\mu^+\mu^-H$           | 0.046                      | 0.037                                      |
| $250 \text{ fb}^{-1}$ | $0  \mathrm{fb}^{-1}$ | $e^+e^-H + \mu^+\mu^-H$ | 0.040                      | 0.027                                      |
| $0 \text{ fb}^{-1}$   | $250 \text{ fb}^{-1}$ | $e^+e^-H$               | 0.066                      | 0.067                                      |
| $0 \text{ fb}^{-1}$   | $250 \text{ fb}^{-1}$ | $\mu^+\mu^-H$           | 0.037                      | 0.057                                      |
| 0 $\mathrm{fb}^{-1}$  | $250 \text{ fb}^{-1}$ | $e^+e^-H + \mu^+\mu^-H$ | 0.032                      | 0.043                                      |

Source: Tim Barklow, e-mail of 28/9/09

W.r.t. LOI and LOI update for IDAG: Correction for 14mrad crossing angle included

Mass StError sigma StError 0.05 0.69 120.28 0.05 mumu 5 trk: ee 120.47 0.10 0.83 0.09 ee+Cal 120.15 0.06 0.76 0.06 120.24 0.06 0.61 0.05 mumu MI: 120.51 0.41 0.81 0.39 ee ee+Cal 120.16 0.24 0.73 0.25

Mail by Giovanni Tassielli 26/09/09