Flux Concentrator Studies

Tom Piggott, Ryan Abbott, Charles Brown, Jeff Gronberg, Lisle Hagler, Jay Javedani

S&T Principal Directorate

LLNL-PRES-417219

Lawrence Livermore National Laboratory

Increasing Positron Yield

• Flux concentrator design provides an external magnetic field after the target to increase positron

Graphic from W. Liu and W. Gai, Argonne National Laboratory

Approach

- Form an idea of what is really achievable
- Match this to the performance envelope, provide basis for an informed decision
- Look at produced magnetic field- power supply required
- Evaluate heating and mechanical loads on device
- Evaluate special loads due to operation area
- Evaluate effects of magnetic field on target

Specifications

- ~4 T max field, with 1 ms pulse length, operated at 5 Hz for 9 months at a time
- Placed behind target to provide focusing effect
- Consulting outside sources and working on analysis
- Future analysis will need to look into effects of beam particles impacting the device as well

Code Structure for Analysis CENGINEERING

Modeled Geometry: Overall

S&T Principal Directorate

Note1: This geometry is our depiction of Wang's Flux Concentrator model where 4 Coils and 4 disks with a straight bore are modeled.

H. Wang, et. al., "Modeling of Flux Concentrator, Argon National Lab, WF-NOTE-234, August 2006. ANL.

Note 2: Disks and Coils material is Cu-OFHC; electrical conductivity of 3.5714E+08 S/m. The cooling container is of stainless steal with electrical conductivity of 1.E+06 S/m. *H. Brechna, et. al, "150 kOe Liquid Nitrogen Cooled Pulsed Flux-Concentrator Magnet," Review of Scientific Instruments, V.36, No. 11, Nov 1965, pp. 1529-1535.*

Note 3: Each plate has a 0.2 cm wide slit and each slit is rotated by 90° in each successive plate.

Note 4: Cooling Channels were added based on Bitter Magnet Design.

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/m akingmagnets/page2.html

Maxwell 3D used to predict magnetic field

Current injection scheme

100 kA of 1.0 ms pulses at 5 Hz for ~2.3E+07s (9 months) for each coil

|B| and H along center-line

J and |J| at the xy cut-plane of plate3 and coil3 at 0.0006 s

Cfdesign predicts the heat transfer conditions from the cooling flow

Geometry, EM loads, and cooling conditions are being analyzed in ePhysics

Further Steps

- Determine what can realistically be built
- Linear effects only modeled- check to ensure this is the operating range- device lifetime indicates probable failure outside this regime
- Investigate effects of temperature on material properties (do thermal, mechanical, or electrical properties vary enough to be important)

Rotordynamics

- Working with experimental team at Daresbury Laboratory
- Produced an FEA model of rotordynamic system
 - Aids in interpretation of experimental data from rotor system
 - Useful in predicting important behavioral features in dynamic behavior of wheel experiment

Rotordynamics

FEA Predicted Modal Frequency = 184 Hz

1st Transverse Bending Mode

Experimentally Observed Modal Frequency ~ 170 Hz

LLNL Areas of Work

- Flux concentrator studies
- Magnetic simulations of Daresbury Laboratory spinning wheel experiment
- Rotordynamics analysis of Daresbury Experiment