Measuring the Higgs boson self-coupling in $e^+e^- \rightarrow \nu\bar{\nu}HH$

UB, PRD 80, 013012 (2009)

- 1. Introduction
- 2. $\nu \bar{\nu} H H$ production
- 3. Sensitivity limits
- 4. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Introduction

- If it exists, the Standard Model (SM) Higgs boson will be discovered at the LHC
- The LHC promises complete coverage of Higgs decay scenarios
- Quantitatively at the LHC: measure
 - $\Im M_H$ to 0.1%

 - $rightarrow \sigma \times \operatorname{Br}$ to 10%

• what remains to be done: determine Higgs potential

$$V(\eta_H) = \frac{1}{2} m_H^2 \eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4} \tilde{\lambda} \eta_H^4,$$

 η_H : physical Higgs field, $v = (\sqrt{2}G_F)^{-1/2}$, SM: $\tilde{\lambda} = \lambda = \lambda_{SM} = m_H^2/(2v^2)$ $\Leftrightarrow \lambda$ and $\tilde{\lambda}$ are *per se* free parameters

- to measure λ ($\tilde{\lambda}$), experiments must observe *HH* (*HHH*) production
 - \checkmark HHH cross sections too small to probe $\tilde{\lambda}$ at any machine considered so far

 \Leftrightarrow concentrate on λ in the following

- radiative corrections to *HHH* coupling:
 - \implies SM: -4% -11% for $120 \text{ GeV} < M_H < 200 \text{ GeV}$ (Yuan *et al.*)
 - ☞ can be up to 100% in general 2HDM
 - MSSM: up to 8% for light stop squarks (Hollik *et al.*)

- The measurement of the Higgs self-coupling, λ , is one of the benchmarks which is used to determine the performance of the ILC (and also CLIC)
- Can measure λ in ZHH and $\nu\bar{\nu}HH$ production: $\sigma(ZHH) \gg \sigma(\nu\bar{\nu}HH)$ at $\sqrt{s} = 500$ GeV, $\sigma(ZHH) < \sigma(\nu\bar{\nu}HH)$ for $\sqrt{s} \ge 1$ TeV
- Results for *ZHH* production are presented in the jets working group
- Here, I present calculations using MadEvent

$$\Leftrightarrow$$
 for $m_H = 120 \text{ GeV}$ and $m_H = 140 \text{ GeV}$

$$rightarrow \sqrt{s} = 1$$
 TeV and 3 TeV

- \Leftrightarrow for $e^+e^- \rightarrow \nu\bar{\nu}HH \rightarrow \nu\bar{\nu}4b$ and $e^+e^- \rightarrow \nu\bar{\nu}HH \rightarrow \nu\bar{\nu}b\bar{b}WW^*$
- with the backgrounds, including the non-resonant diagrams, calculated using exact matrix elements

2 – $\nu \bar{\nu} H H$ **Production**

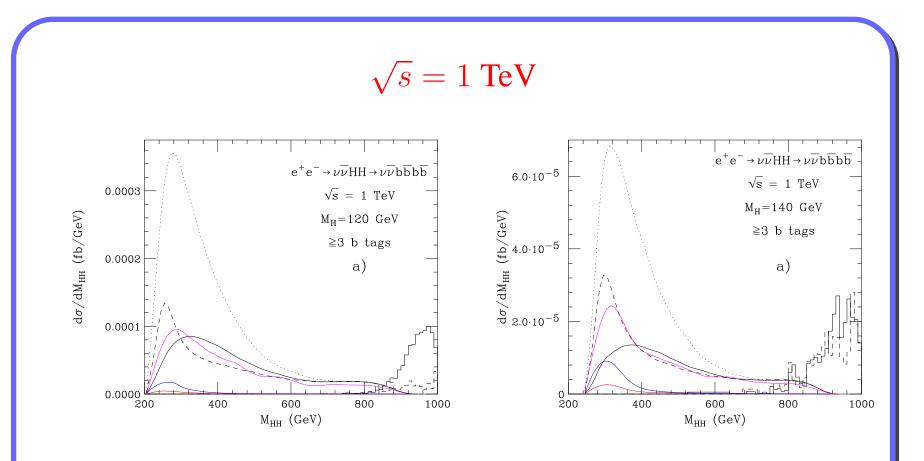
• Consider $\nu \bar{\nu} H H \rightarrow \nu \bar{\nu} 4b$ first and require that the four *b*'s form two pairs which are compatible with a Higgs boson

100 (120) GeV < $m(b\bar{b}) < 126$ (150) GeV

for $m_H = 120 (140)$ GeV.

- require ≥ 3 tagged *b*-quarks
- include $ZHH \rightarrow \nu_l \bar{\nu}_l 4b$ with $l = \mu, \tau$
- include minimal detector effects by Gaussian smearing (ILC detector expectations):

$$\frac{\Delta E}{E}$$
(had) = $\frac{0.405}{\sqrt{E}}$, $\frac{\Delta E}{E}$ (lep) = $\frac{0.102}{\sqrt{E}}$


• cuts:

 $E_{j(b)} > 15 \text{ GeV}, \qquad 5^{\circ} < \theta(j(b), \text{beam}) < 175^{\circ}$ $\theta(j(b), j'(b')) > 10^{\circ} \qquad \theta(j, b) > 10^{\circ}$ $p_T > 15 \text{ GeV}$

- assume a *b*-tagging efficiency of $\epsilon_b = 0.9$, and charm and light quark/gluon jet misidentification probabilities of $P_{c \to b} = 10\%$, $P_{j \to b} = 0.5\%$
- take energy loss of *b*-quarks into account via a parametrized function
- m_{HH} distribution is sensitive to λ

- main backgrounds:
 - rightarrow non-resonant diagrams ($\approx 2300 \mathcal{O}(\alpha^6)$, and $\mathcal{O}(\alpha_s^2 \alpha^4)$ diagrams)
 - $\sim \nu \bar{\nu} b \bar{b} c \bar{c} (\nu \bar{\nu} b \bar{b} j j)$ production with two mis-identified charm (light quark/gluon) jets (900 [2100] diagrams)
- assume *b*-jet charge can be measured with 100% efficiency (expectation for ILC: $\approx 90\%$)

results: solid black: SM signal, magenta: SM resonant and non-resonant diagrams dash (dots): Δλ_{HHH} = (λ/λ_{SM} - 1) = +1 (-1) blue: νν̄bb̄cc̄ background red: νν̄bb̄jj background solid (dashed) histogram: 4b (b̄bjj) background

- The $\nu \bar{\nu} b \bar{b} c \bar{c}$ and $\nu \bar{\nu} b \bar{b} j j$ backgrounds are small
- The 4b and $b\bar{b}jj$ backgrounds pose no threat to the measurement of λ
- non-resonant contributions can easily be mistaken for a positive anomalous Higgs self-coupling

- For $m_H = 140$ GeV: $B(H \to WW^* \to 4f) \approx 50\%$, $B(WW^* \to 4j) \approx 46\%$
 - → one can significantly increase the signal cross section by taking into account the $\nu \bar{\nu} b \bar{b} 4 j$ final state
- Also take into account $H \to ZZ^* \to 4j$ $(B(H \to ZZ^*) \approx 10\%$ for $m_H = 140$ GeV)
- require

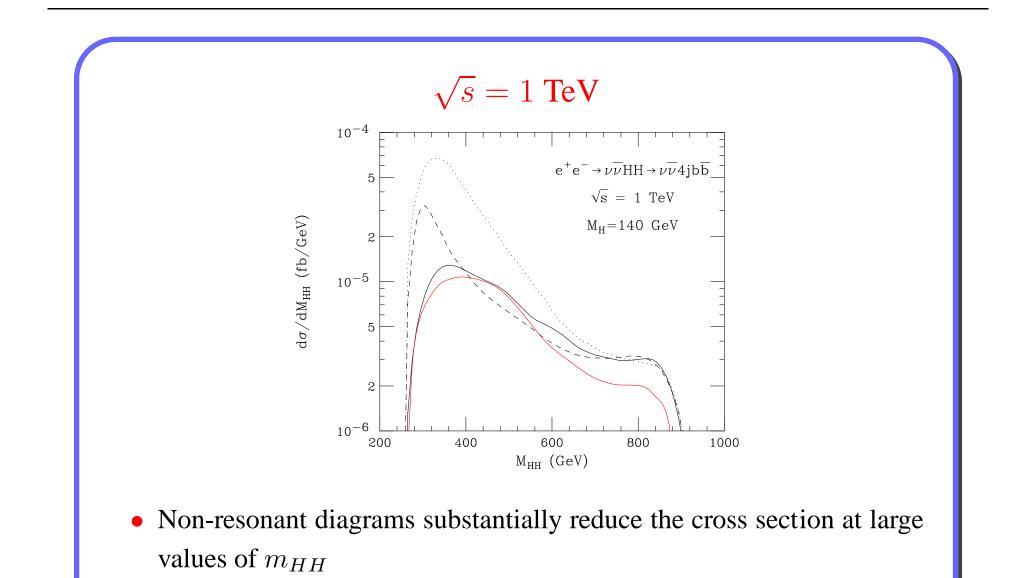
 $|m_H - m(4j)| < 20 \text{ GeV}$

and one un-tagged jet pair with

 $|m_W - m(jj)| < 8 \,\mathrm{GeV}$

• main backgrounds: non-resonant $\nu \overline{\nu} b \overline{b} 4 j$, $\nu \overline{\nu} 4 c$ and $\nu \overline{\nu} b \overline{b} c \overline{c} j j$ production

- problem: these are $2 \rightarrow 8$ processes with $> 10^5$ Feynman diagrams
 - too many diagrams for MadEvent (takes more than 200h CPU time (3ghz Xeon) to generate diagrams
 - WHIZARD could not compile code (compilation terminated after > 48h)
 - HELAC-PHEGAS bombed with a glibc error
 - SHERPA can't handle it in its current version (V1.1), but, according to Frank Krauss will be able to so in V1.2
 - CARLOMAT should be able to handle it, but is not publically available (author never replied to my email request)


- A substantial portion of the contribution of the non-resonant $\nu \overline{\nu} b \overline{b} 4 j$ diagrams should come from the off-shell $W^* \rightarrow jj$ pair.
 - \rightarrow most of the non-resonant effects can be captured by calculating

 $e^+e^- \to \nu \bar{\nu} W j j b \bar{b}$ with $W \to j j$

or

$$e^+e^- \to \nu\bar{\nu}H4j$$
 with $H \to b\bar{b}$

- Calculate $e^+e^- \rightarrow \nu \bar{\nu} W j j b \bar{b}$, $W \rightarrow j j$ here (about 7000 Feynman diagrams)
- Expect $\nu \overline{\nu} b \overline{b} c \overline{c} j j$ and $\nu \overline{\nu} 4 c$ backgrounds to be small (as in $\nu \overline{\nu} b \overline{b} c \overline{c}$ case)
- The $b\bar{b}4j$ background (with p_T from jet mismeasurement and energy loss of the *b*-quarks) is very small

• The non-resonant diagrams not included in $\nu \bar{\nu} W j j b \bar{b}$ jet production may well affect the cross section to a similar degree

3 – Sensitivity limits

- Perform a log-likelihood test
- Assume a 10% systematical uncertainty on cross section (probably optimistic)
- assume $\int \mathcal{L}dt = 1$ ab⁻¹ (corresponds to 5 years of running at ILC design luminosity)

• 68% CL limits:

✓ At CLIC ($\sqrt{s} = 3$ TeV), limits can be improved by up to a factor of 1.5 if 3 ab⁻¹ (5 years of running at design luminosity) can be achieved

for comparison:
$$ZHH \rightarrow jj4b$$
:
 $\sqrt{s} = 1$ TeV, $m_H = 120$ GeV: $-0.45 < \Delta \lambda_{HHH} < 0.53$
 $\sqrt{s} = 1$ TeV, $m_H = 140$ GeV: $-1.0 < \Delta \lambda_{HHH} < 1.1$

rightarrow limits from $\nu \bar{\nu} H H$ production are significantly more stringent

4 – Conclusions

- Non-resonant diagrams can significantly affect the total and differential cross sections in $e^+e^- \rightarrow \nu \bar{\nu} H H$
- Non-resonant diagrams in $\nu \bar{\nu} 4b$ production can mimic the effects of non-standard Higgs self-couplings
- At a 1 TeV machine, with 1 ab⁻¹, νν̄HH production makes it possible to probe the Higgs self-coupling with a precision of 20 30% for m_H = 120 GeV, and 40 90% for m_H = 140 GeV
- For CLIC ($\sqrt{s} = 3$ TeV, 3 ab⁻¹) can measure the Higgs self-coupling with a precision of 10 15%.